

上桁
第一章 拓扑宝间简介 Chapter 1 Introduction to Topological Spaces
多1.1 集论初步 The ABCs of Set Theory
· 禄 (elenant) 集态(set) XeX
表示集信方法 : 列艮所有元惠 / 抬出元惠判性 .
Det 1 錄 (Subset) ACX 相樂 XCY且X>Y ⇒ X=Y
真3集(proper subset) ASX
Def 2 f (union) AUB = $\{x \mid x \in A \otimes x \in B\}$.
克臬 (intersection) ANB= {x x ∈ A 且 x ∈ B }.
差集 (diffurence) A-B:= {x n=ABn+B}.
執 $ (complement) -A := X-A $.
Claim 1-1-1 庆稼得 AUB=BUA ANB=BNA.
结合律(AUB)UC= AU(BUC) (ANB)NC=AN(BNC)
方面付 (ANB)UC=(AUC)ハ(BUC) (AUB)ハC=(ANC)U(BNC)
De Morgan 律·A-(BUC) = $(A-B)\Lambda(A-C)$ A- $(B\Lambda C) = (A-B)V(A-C)$
Pf:等试两些相望信,即一边集中的元素属于另一些集合。
· 卡托森 (Cartesian product)
Def 3 非强信X. Y的标款是个有序对库。
例1.X=Y=R' R=R×R R ^{n.} ≔R×R×·1R 有n↑自丝坐标。
· 距為 (distance)
Def4 IR ⁿ 的作為所表 x=(x',,x''), y=(y',,y'')之间的距离
1y-x1 = \(\frac{1}{161} \) (y'-x')

Def b 映射f:X→Y为-的(one-to-one) 任-yeY有不舒-↑連像(≤1) 単射 (injection) 映射f:X→Y为到上的(ondo) 任-yeY都有連像(>1) 満射 (surjection) f:X→Y对fBcY在fr的勤务为f ¹ [B] = {xeX f(x)eB cX = xx射 (bijection) Def 7 f:X→Y为常值映射: Vx,x'eX, f(x)=f(x')	(rop)
X 为映射 f 的定义域($domain$) X的全体元表在映射于下的像的集在 $f[X]$ 为映射于: $X \rightarrow Y$ 的值域($ronge$)相等映射 $f: X \rightarrow Y$, $f': X \rightarrow Y$ $\forall x \in X$, $f(x) = f'(x)$ 例 $2: R^n \otimes I R$ 的映射为 $-f': Z \mapsto X$ $\neq X \rightarrow Y$ $\Rightarrow X \rightarrow Y$ $\Rightarrow Y \mapsto Y $	X,Y为拇集 映射f:X~Y为一个法则,给X中的推足Y的唯一对应法素
X 的全体元素在碘付于下的像的集合 $f[X]$ 为映射于: $X o Y$ 的值以 $(ronge)$ 相等明射 $f: X o Y$, $f': X o Y$ V $X o X$, $f(x) = f'(x)$ 例 $2: R^p oldsymbol{N} R$ 的映射为一个二元函数 $/ R^n oldsymbol{N} R^n$ 的映射给出州个几函数 Pef b 映射 $f: X oldsymbol{N} X oldsymbol{O} - (one-to-one) 任 - y \in Y 有不勢一个連像 (s) 单射 (injection) 映射 f: X oldsymbol{N} X oldsymbol{O} - (one-to-one) 任 - y \in Y 都有連像 (s) $	y=f(x) y为x在映射于下的像(image) x为y的原像 (inverse image)
相等映射 $f: X \rightarrow Y$, $f': X \rightarrow Y$ $\forall x \in X$, $f(x) = f'(x)$ $\{M\}_{\mathbb{R}}$	X为映射 f 的键处域(domain)
例2: P*到 R的映射为-1元8数 / R**到 R**的映射给出m*1元函数 Def b 映射f: X→Y为一的(once-to-one) 任-yeY有不舒-1連像(≤1) 単射 (injection) 映射f: X→Y为到上的(oncto) 任-yeY都有連像(>1) 準射 (injection) f: X→Y对于BCY在fr的逆象为 f**[B] == {xe}X f(x)eB CX = \$x\$射 (bijection) Def 7 f: X→Y为常值映射: ∀x,x'eX, f(x)=f(x') Def 8 f: X→Y5 g: Y→ Z为映射 R) f和 g的复合映射 g o f: X→Z (gof)(x) == g[f(x)] e Z	X的全体元素在映时于下的像的集合 f[X] 为映射于:X→Y的值域 (ronge)
Def b 映射 $f: X \rightarrow Y \rightarrow - \Theta$ (one-to-one) 任 $- y \in Y$ 有不舒 $- Y$ 連朝 (injection) 映射 $f: X \rightarrow Y \rightarrow$	相等映新 $f: X \to Y$, $f': X \to Y$ $\forall \alpha \in X$, $f(\alpha) = f'(\alpha)$
映射 $f: X \rightarrow Y $ 为到上的 $\{ontoo\}$ 任 $-y \in Y$ 都有連傷 $(>)$	P*到 R的映射为-个元份数 / R**到 R**的映射给出m**/n元兴数
f: X o Y oxf B C Y C C F T 的 逾	映射f:X→Y为的(one-to-one)任-yeY有不多于一个逆像(≤1) 単射 (injection)
Def 7	映射f: X→Y为到上的(onto) 任-yeY都有重像(>1) 满射(surjection)
Def 8 $f: X o Y o g: Y o Z o wy o N o N o N o N o N o N o N o $	→Y对于BCY在于的塑象为f=[B] == {neX f(n)eB CX = 双射 (bijection)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	f:X→Y为常值映射: ∀x,x'eX, fin)=fix')
· R中任西湾的距离概念 ⇒ 一元函數 f: R→R的连续性尼-G定义 V620, 38>0 St.当 x'-x < 8 时有 f(x) - f(x) < 2, P) f在x上连续 · + f在R上连续 ⇔ Y中任-邢区间的逆缘都是X的邢区间之并,P) f: X→Y连续。 [邢区间之并定义] [R中形缘的本版.独缘性版 (a) R和《都贵形集 (b) 有限介形缘之交(b)是所3集 (c) 任意介形缘之并(b)是	f: X→Y与g: Y→ Z为映射则于和g的复合映射 gof: X→Z
∀€20,∃\$>0 \$-1.\$\\\\\ 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(gof)(x) == g[fm]e \ \ \name{x}
⇔ 丫中任-邢区间的連緣都是X的邢区间之并,则于:X→Y连续. [邢区间之并定义] 【R中形集的本版.独缘性版 (0) R和中都贵形集 ()有限介形集之交仍是形子集 (2)任意介形集之并仍是	压肠元素的距离概念,⇒一元数数f:R→R的连续性E-8定义
(R中形缘的本版:抽象性版 (a) 1R和中部提形集 (b)有限个形缘之交仍是形子集 (c)任意个形缘之并仍是	VE>0, 38>0 St.当 X-X < 6时有 f(X) - f(X) < €, P() f在X上连续. + f在(R上连续
<u> </u>	> 丫中任-邢区间的逆像都是X的邢区间之并,刚f:X→Y连续. [邢区间之并定义]
⇒从R中抽象到蒋伟X.	i3集的本版:抽象性版 (0) R和《都是形集 (5)有限个形子集运分份是形子集 (c)任意个形杂之并仍是
	⇒从R中抽象至1克集KX.

81.2 F	研究间	Topological	Space.
· IR	ŀ→χ	辅蜂	\$> ↑拓朴,给集后X1吋加3拓扑结构,全美战为拓扑学间。
Def 1	排蝶6X1	物錄,署	解PP选取一个3集了作为X的拓扑(tapology) [集获].
滿	£ (a) \$ E	J, XeJ	
	山港O	ieg, i=1	.2n,则穴O1eJ
	(4) 巷区	LEJ, Ya	(, P) U Ox e J
Def 2	搬3杯	かり的幹を	5×称为拓扑空间 (topological space)
	杨煌间	X中的狼(OE了则 O为X中的研(open set)
例1:	ፓክ Xt	邻绵	的集合(X的幂集) 了=9 则了为离散石阶(discrete topology)元蓁
13リン:	可仅馆	.Χ,φ	了={X,φ} 见] ブガ 凝緊拓扑(indiscreta topology)元義帯)
例3	X=IRn	f (ope	n ball) Bo(双,r)= fxelR^ x-xo <r}. n="2开球=开圆</th" 开球="开空间"></r}.>
		Ju={皇	镍px Pr中能表为开球之弃的子集1.为 IPr的通常拓扑 (usual topology)
一角	片无声 晰	拓扑空间为	タ (ピ゚, Ju) .
13/4:	陷地	(X, J,), (X.苏)X=X,×X. 有效分配空间间理,如R.
	9={0	CX O可韧	物01×02的3集2并,014了,1024万~为X的事积3计
例5:	阿唑林	(X,J)	AXX的维·3条并破环计分
	y = {V	90E/A>	了使V=ANO~为A的,由了绘出的选序环扑(induced tapology).
	(A,Y)%	· (X, J)的	与标析子空间 (topological space)· X=R*
作环·	劉河河	的映射的望	王续性·
Def 3a	诙(X,T)	15(Y,Y)X	为拓扑空间,映射f:X→Y为连续的(continuous):
	#t uncl	J滿f™	· oled

Def 31 版(X,T)与(Y,Y)例辨馆间, 联射f:X→Y在点积X处盘集: Y滿足fineg'的G'ey 3GeT使xeG且f[G]cg' 茏f在析有xeX《连续,则f:X→Y为连续的 例如 X=Y=R, J=S=J、柘胜闽映新的连续性定义⇒IR上的易数连续性 6-8处 · 掃空四上的同胚映射. Def 4 杨朴宝国(X,丁)与(Y,Y)三国东在一个映射于:X→Y 满走(a) f是一到上的(有且项个事务) 的 f&f*都蓬线 则於 f为从(X,J)到(Y,Y)的同胚映射 (homeomorphism). 且 (X, T) 与(Y, Y) 互相风胜 (homeomorphic to each other). C^r代表r阶号的数征且连续, C^{ro}代表任意阶号的数存在且连续, 即光滑(yworsh) $\Rightarrow f:X\to Y \circ C^{\circ} if O \circ Y \Rightarrow f^{-1}(O) \circ J \circ C^{\circ}(r)$ 性酸硫酸在含化性的外期上,其勒摩拉凡胚性质. 同胚瞬时在X的形集与Y的开子集建立一对应的联队(性联队) ⇒ X,Y至相同胚,即X,Y在磁上等价 例b:任平区间(a,b)CR与R同胚. 例8: PL的圆目为椭圆用附上了L给出的诱药的 (SI, Js)与(E, JE)同胚. ⇒应用: 數电路/黎网络"网络研学". ·皇暾 (neighborhood). Def5 306可使得x60cN则NCX初加xeX的干部域,IB是研究的中心是干部域 Claim 1-21 ACX是开集组仅至 VX6A,A是X的邻域 · 闭集 (closed set) Det 6 -CET则CCX为闭集.

Claim 1-2-2 闭床性飯 (a) X b 中 是闭集 1b A 限个闭集的交集是闭集 c) 任管行闭集的并集是闭集

任何拓扑到(X,丁)都有两个即开又闭的子集:X,巾

· 连遍性 (connected)

Dd7 若环朴皂间(X,丁)除X和内外涉(既取闭的3集,则(X,丁)是连通的

例9:A5B是IRL的形间 ANB=P 取X=AUB且以IR的通常磁形飞滤音出了 NIA.B既积闭 (X,T)不连通.

· 闭包Ā (dosure)为最小河集 内部 i(A) [interior)为最大开集 边界 À == Ā-i(A) (boundary)

Def 8

Def 8 · 开覆盖 (open cover).

Def 11 X的形象的集合{Ou}\$满定ACYOU(Ou‱AACX的-介于覆盖.

多1.3 紧软性 Compactness.

Def 1 设{Ou}是ACX的开覆盖,若{Ou}中有限行表构成的子集{On,...Ocm}也覆盖A Di Oc; >A 則 (Od)有有限3覆盖 (finite subcover).

Def 2 若ACX的任于覆盖都有有限覆盖,则A是累效的(compact)

财 3 若翻燈间(X、了)中 $\forall x.y.g.X$, x + y, $\exists 0, 0 2 \in J$ 使 $x \in 0$, $y \in 0$ 且 $0, \epsilon 0 2 = \emptyset$ 则(X,J)粉放下空间或豪斯朱安间(Hausdorff space)

Claim 若(X,可)为飞空间,ACX为累致,则A为闭集

苤(X/J)为紧钦 , A<//>
(X/J)为紧钦 , A<//>

ACIR为累敦 当职当 A加有界间床。

Def 4 有界(bounded) 3开球BCRMSitACB

{0,-..}cJ

Def 5 在国际映射下保持不变的性族为超种性版(topological property)对 范朴不变性(topological invariance) 紧软性,连续性,下性都是勐州性质.

Def b 杨宇间 [X, T) 称为第三项数的(second countable), 苦了存在可数,集了0,;--,0;{cT

使得任-0年了可被表为{01,-.,Ok}或{01....}的元素之并

第二章 流形和张莹彻 Chapter 2 Manifolds and Tensor Fields.
§2.1 微为流淌 Differentiable Manifolds.
· Topological Space [Topological Structure].
□ Differentiable Structure] ⇒ Manifolds like IR ⁿ
Def 1 拓扑空间 M 积分 n 维彻分流形 (n-dimensional differentiable manifold).
1a)对每一个Ox,3同胚化:Ox→Vx (Vx为Rn中用避常拓扑衡量的形集) honeo 局部如于Rn
$ b $ $\pm O_{\alpha} \cap O_{\beta} \neq \emptyset$,则复合映射 $\gamma_{\beta} \circ \chi^{-1}$ 是 C^{∞} (光滑的) 相容性条件(conpatibility)
{Out} homeomorphism the Tanger Va & Ju Va & Ju.
→ Outed
OanOp Va (链缘容)
n.红流斑 作 tonot! 光灌流形: M是Hausdorff的和第二项数码
Note: ① Ypo tot: Yu [OuNOp] c R^n → Yp [OuNOp] c R^n 相容性条件要求这个介元函数都是 Coo
② peOd→Yup)eR*有n个自然生标,即pe在映射发下获得的生标(同胚映射描述标)
(Ou, Yu)构成一个同域生桥教 (coordinate system) Ox为生标议 (coordinate patch)
γ_{β} のす。 定义性病更致(coordinate transformation) $\chi'' = \phi(\chi', -:, \chi'')$, $-::, \chi'' = \phi(\chi', -:, \chi'')$
Def 2 性标条 (Ox, Yx) 務均图 (chart)
滿足同胞性与相塞性条件的结婚的集合 {(Ox, Ya)}
一个图册中的任意两个图相塞。
例1:M=(IR*, Ju) 0:=IR* 计=恒等映射 > 只在个图的图例 \(O(1))}
⇒ IR"是均流的 、
① 自丝转: PelP在外下获得的生标
② 其他坚标:选择与(01.4)相磨的另个图(02.16) Pell>在比下获得的坐标 (极轻标说不露盖lP3体色)

S2:={xe|R2|1x-0|=1}是郑绾翀的郸键面. M=(S², Y) 例2: Y是IP的Ju在Sz上诱导的拓扑 M= (S',3) S':= {xε|R²||x-0|=1}是=维宝间中的单位国用 例3: 了是IP的现在S'上诱导的拓扑 平월 $O_i^+=\int (x',x') \in S' |x'>0$ $O_i^-=\int (x',x') \in S' |x'<0$ i=1,2{O;*}为S'的-个干覆盖(4个平集) 性(水水)= 水 χ' , 邓为R上的包丝生标、 同胚映射 χ^{\pm} : Q^{\pm} \rightarrow R的平区间(III) 是设势映射 χ^{\pm} (π' , π')= π^2 ョ (S'J')是个-维流的 ⇒ (S²,5)是个海流形。 同理·六个科球+投影映射长:Q→1P2上的开圆盘 · 拓扑结构与微分结构. 且在0~106上为发不满处的 ② 图册相密→同于微分流形(默认取最大图册) 拓扑结构由选取的拓扑了决定. 进行储铁板装换水水 ・微分元码之间的映射 连续(拟结构)/写微(微分结构) 流移M (n-dim) M'(n'-dim) 图册分别为 ((Ou, ta)), {(0i, ti)}, M.M'刘助映射f:M→M' T稿其连续与可徴帳(c²)→> 秀雅・foなっ Va=4a[Oa] VPeM 任取(Oa.妆) St. PeOx (中(0g,4g') s.t.f(p) eOg' Vg'=4g'[0g']. IR" "Yofo"k":(R^→1R^"为n"个n亢敏数. 460fo7~ 指ofo指的C性可用定义f:M→M的C性.

Q:为约n个n元函数的C性是一致的.

				U. U.) -1.5.	
Def 3.	f=M→M	Y初为CY类映新	ž¥þeM,鹏	节ofo发对应的n/	「n无数是C*类的.
	•				
		_	foft是c°°的		
	则称 fx	bMM動M/的/	数分门胚映射(di-	feomorphism)	
			E (diffeonorphic to		
Note:					流西在微分流形层面上等的
			的父要条件是维教村	rÆ	·玛M同学像1Kn
	3 Def 1	对拓扑空间M和	·IRn 映射水: Ox →V.		着作微分流形长是微分同用
• M'=1	R时的映象	寸 ·			
Def 5	f:M→	IR 初为M上的色	数(function on M))或M上的糙汤 (scalar field on M).
	芳∮为℃	的,则称为八1	二的光滑函数 . M	1上维光滑出数集台	カチM
(約)的] f:M=	> R < \\ \(\frac{\{n^{\mathred{N}}\}}{\{n^{\mathred{N}}\}}		= f(x,,x ⁿ) = f(x) [相对的,不同].	
		(0,4)	N础数 F'=foyt	'= F'(x',, xh) = f'12	y F', IR"→M→IR.
			助达数.		J IR
		f101,2011	XL的n元数—	¥ / ! !	Je,
			紡议Qu和4构成的		MO V IR".
M,N	1为港野,	维数分别为m	和n,则MxN也是	治眵,维数为m+n	dim (MXN) = dimM+dim
• •		•			且F=foy+:1R³→1R绘出.

§2.7	切头和七	灰均	Tangeut	Vector and	Tanget 1	lector Field	.\$	
2.2.	切矢量		•					
・线性	空间伤	壁凹).						
Def 1 13	楼城上自	ら-1矢輩	空间 (Vect	or space)昆	·十集台V匝	记以两个映象	Ħ	
(a) to	法(addit	ion) V	/×V → V	り数	E (Scolar mul	tiplication)	۱R×V	<i>l</i> → <i>V</i>
且滿走	A 1'11'17	εV, ∀α	اعدا, مرامعة	R .				
0 Vit	·V2= V2 +	VI			@ (V1+V2)+V3=V1+((44دلا)	
3 35	玩旦使	<u>0</u> +V=V			@ a1(a2)	V)=(0,00)	/	
(d)	1+d2)V=	d, V+ 02	V		@ ox (Vit	V)= <v+< td=""><td>×V₂</td><td></td></v+<>	×V ₂	
0 1	V = V	0-V=0			⇒ Jue	V使 u+v	=0 约定	U=-V
爱	空间中的1	计裱糊	め類(vec	kor)				
例如	沙球队	詗 pe	IE'Vp是	从户出发的	斜納和	1展的1到	筷 V的集	
	加法:平	行四边R	3法(4)	数乘:	t庚伸缩.	→ Vp5b	缝卵	
4軒至	偮唜殍	,M. ¥	peM 定义	*数15量1	她们的集	危构成 p兰	的维宁则	
一个	附:	v: f ↦ !	獙 [任	C [®] 基数fi	7治7年3代]导数得%	刘 + 线性	业+种碱
Def 2	映射 V:	FM → 1	R初分子	eM 的作	董(Vector)	TM是2	ML全体	·光滑·数的集后
老好:g	gegm.	a.BelR	有					
(4) 飨	性性 1	J(αf+β	g)= x v(f)+Bv(g)				
山新	阳鳞	V(f]) = flpv	(g) + g p V (f)· 斯	flg代表些	yf在P鱼的	
•				fglp=flp				
Clain 2-	2-1 谈					!Pf.ln=f2l,	- v,则对P트	任-安量V存V(f)=

· 性柄基矢 (coordinate basis vector) 与坐标污量 (coordinate components) 定义peM的-介矢量v ⇔ 推定-介从系列R的, 满类(a)(b)的映射 [经基版] 推对应规律→每个fé5m对应-个确定的实数 [-些外有规约差]. 设生标 $\{(0,1)$ 中的生标为 $\{x^{\mu}\}$ 定义0中任- i P处的n个矢量 $\nu = X_{\mu}$ $\mu = 1$ ---n. * M上的光涓鱼数 fe3m + 映射屮(y²) ⇒ h元色数 F(x1,···x1)= fo¥²¹· X_{μ} that $f = f \in \mathcal{F}_{M}$ $X_{\mu}(f) := \frac{\partial F(x', -\cdot x')}{\partial x''} |_{(x'p), x'p), -\cdot\cdot, x'(p)}$ ith $\chi_{\mu}(f) = \frac{\partial f(n)}{\partial \chi^{\mu}} |_{p}$ if $e f_{M}$. Clain 2-2-2 以Vp代表M中P与所积量的集合,例Vp是n维矢量空间,即dimUp=dimUn=n Pf: Vp 满块量空间定义 Def 1. 數乘 (av)(f)==av(f) bfegm veVp xelR. 任选坐桥教(0,4) st. peO Xu(f):= 2F(x*,...,x*) p 定×3 PE的 n介矢量Xu 从=1....n 全量相等⇒作册同光滑必数得到的实数相等. 坐标 x 为坐标议上的函数 MT M→R. 两些同时作册次, $\alpha_{h} = \alpha_{h} \beta_{h}^{h} = \alpha_{h} \frac{\partial \alpha_{h}}{\partial \alpha_{h}} \Big|_{b} = \alpha_{h} \chi^{h}(\alpha_{h}) = \overline{0}(\alpha_{h}) = 0 \implies \alpha_{h} = 0 \quad h = 1,..., u$ α^ν ΒΡ为光屑函数 α^ν与坐标系+γ (γ⁻¹)复定得到的 h元函数 . 由此 $\alpha^{\mu}X_{\mu} = 0$ 岁且仅当 $\alpha^{\mu} = 0$ $X_1 - ... X_n$ 线性独立 $\dim V_p > n$. ②证明 ∀veVp 有 v=V*X* 其中 V*=v(x*). [Wald 1984 Pb] 即 Vp的任-元素都可用ntXm线性表示,表示秘数是以V作用于Xm所得的实数. fXi···Xn}是Vp的-↑基底 ⇒ dimVp=n.

Def 3 生标成内任-鱼P的 {X1···Xn} 称为Vp的-个生标基底 (coordinate basis) 每一个Xn初为一个生标基实,veVp用 ₹Xn } 线性表示的 毅 V*和为 V的坐标分量。 Claim 2-2-3 设行公川和介公川为两个生标系,其些标成的交集非星 P为交集中的一点 VeVp. {V^}和{V'~}为V在两个种的生标量 P) 生株分量之间的变换关系カ V"= シスペルVA $\chi_{\mu}(f) = \frac{\partial f(x)}{\partial x^{\mu}}\Big|_{p}$ $\chi'_{\nu}(f) = \frac{\partial f'(x')}{\partial x'^{\nu}}\Big|_{p}$ Pf. 标量的f在95的值 fle=f[xqv]=f'[x'(v)]. Χ'n But $f(\pi) = f'(x') = f'(x'(x))$. eg $f'(x''(x', n^2), x'^2(x', x^2))$ Mss数 f $\left. \left\langle \chi^{m}(\vec{\xi}) = \frac{\Im \int_{\lambda} (\chi(x))}{\Im \chi_{m}} \right|^{b} = \left(\frac{\Im \int_{\lambda} (\chi_{n})}{\Im \chi_{m}} \frac{\Im \chi_{m}}{\Im \chi_{m}} \right)^{b} = \frac{\Im \chi_{m}}{\Im \chi_{m}} \left|^{b} \cdot \chi_{n}'(\vec{\xi}) \right|^{b}$ $\Rightarrow \chi' = \frac{3\lambda_n}{9\lambda_n}|\dot{\chi}_n$ 实数 5章 图 (X', 3 中n 7 基外很比较性独立 => V'" = = = > X" | D V" = = | > X" | > V" = | > X" | > V" | > X" | > ・曲銭及茣切矢. Def 4. 设 I为 R的一个区间,则 C*类映射 C: I→M 和为M上一条C*类的曲线 (curre) YteI,有唯一点Clt)eM与之对应 t初为幽线的参数(parameter). Note: y 映射C和C'是不同曲线(映射不同) 7(CH)=(CH) ◎同一曲线的两种参数化 [C'为C的重参数化(reparameterization)]

((t)= ((d(t))= ((t)) 以 生标系 (0.4) CLII CO ⇒ YoC是从I到 RM的映射

ら れて一記数 かーかけ ルーー・・・
か > C[I] = C'[I'].

曲线的参数活程(参数表达式)

Defs 版(0,4)为些标款,从为些标,则O的3集 {PeO|x"(P)=常数,V+ju}为以次为参数的

一条曲线(缘), 形为加生标线 (coordinate line)

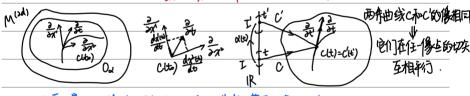
·曲线的切矢

Def b 设C以是流移M上的C'曲线,则线上Ctb) 些的切于Ctt)的切块量(tangent vector) T

是Ctro) 上的矢量,它对fe TM的作用定义为 T(f) = d(fo C) to bfe TM to bfe TM

城下品地

to C TN CITO M.


f[cu)] > f(t).

例上: x1坐标线是以x1为参数的曲线 (x2-..xn常数值不同,对应不同x1坐标线)

 $X_n = \frac{\partial}{\partial x^n} |_p$ 生物基本。 = 过度的外生物线的切失 $\frac{\partial}{\partial x^n} |_p (f) = \frac{\partial f(x)}{\partial x^n} |_p$ $\forall f \in \mathcal{F}_n$.

Claim 2-2-4 设曲线 Ctu) 在某生标条中的多数式为2m=2m(6),则线上任-트的切矢量。并

在液性标差底的展示式为 $=\frac{dx^{\mu}(t)}{dt}$ 即切实的生标分量是多数式 $x^{\mu}(t)$ 对t的导数。

Pet 7. 非愛%型1, u e Vp 初为至相析的 (parrallel), 若 Jole IR S.t. V= XU + (4)

Claim 2-2-5 波曲纹 C': I'→M是 C: I→M的重参数化 [Clt)= C(Ut)]

则两者在任像单的切实是和竞关系为 是= 性(t) 之 t(t): I→I(

七时是由映射α:I→I'游导的-元函数.

サPEM P=Clto) 切失 記長 P上 失量空间 Vp 中的 下元表 .

Vp 中任 元素 (矢量 V) 都 可和 Vp 力 Yp 的 某一曲 数 的 切失

コ P 的 矢量 一 切矢量 (tangent vector)

Vp 一 t 女 で (tangent space)

2.2.7	流的	上的!	港场.

Def 8 设A为M的3集, 若给A中每点磁定一个外量,则能得到一个定义在A上的矢量切(vector field)

例2:非自相交曲线CUI的每点的切矢构成3CUICM的一个经量切

设V是M上的行场 Vp是PE的缝场 ₹ Vifi为M上的个函数 → 经场V可以

f是ML的函数(标题) fefm Vp(f), ve(f) EIR 特函数f映射至函数v(f)

Def q M上的短切 v 初め C[®]类的(光滑的)/C^r类的

巷v作用在C°类的函数结果为C°类函数/C°类的·VIf)e于M fe于M

Clain 2-2-6 M上的爱切V是CO类的(CC类的)

⇔ V在任生标基底的分量 V~为 C~类(C'类) 改数

Def 10 两个批准矢量场 U、V的对易子(commutator)是一个大湄矢量场 [U,V]

$$[u_1v](f) := u(v(f)) - v(u(f))$$

¥f€JM.

Note: [u,v]对易子为M上的矢量场

度义在4peM上作为pi的线 (从加到R的映射) [u,v]|p(f)=u|p(v(f))-v|p(u(f))

Claim 2-2-7 设(2019)为坐标系,则坐标基实(坐标战上的矢量场)对易,[3/20]=0 从,v=1···凡

 $[\frac{2}{3m},\frac{3}{9m}](f) = \frac{2}{3m} \left(\frac{2}{3m}(f)\right) - \frac{2}{3m} \left(\frac{2}{3m}(f)\right) = 0$ 任一生标系的准确任整场对易

·秋油线

Claim 2-28· 近V是M上的光滑矢量场,则M的任-4P处有V的唯一被分做线经过(满足CO=P)

Pf: 任取-生桥系{x*}, 生标议会P 有并积分曲线的参数表达式对与分(t)

切失量 V= 是= 4000円 300 = V2300 生核数.

$$\Rightarrow \frac{d\chi^{\mu}(t)}{\partial t} = V^{\mu}(\chi^{\prime}(t) - \chi^{n}(t))$$

n/函数确定积分曲线且与价选坐标关.

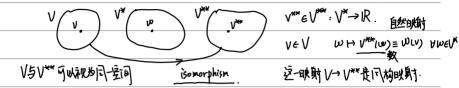
Q.ED

a.a.3 群5对称性.
Def $L2$ 一个群 (group) 是一个集合 G 配以满足以下条件的映射 $G \times G \longrightarrow G$ /群株3. 元素闰乘法为 g_*g_*)
(a) $(g_1g_2)g_3 = g_1(g_2g_3)$ $\forall g_1, g_2, g_3 \in G$
1b) 习恒等元(identity element) eeG s.t. eg=ge=g ¥geG.
(c) YgeG, J連知 (inverse element) gfeG S.t. ggf=gfg=e
对称性: 若某一对象在某一变换下不变,即是它具有该变换下的对称性.
例如 带电面上的一个动气 治外(成分)粗平移(translate) x → x+a y → y ≥ → ≥
砂的电荷面聚度(在1移时不变 ⇒ の具有×(xy)轴 P移对移性 (x+a,y,z)=σ(xy)z)
设治 χ 轴平移 α ($\forall a \in R\rangle$ 的变换新 $\phi_a : R^3 \rightarrow R^3$,是 $ R^3 \perp R^3 \perp$
G={Pa VaoIRi 为治X轴所有科的集 群 ab参数.
詳乘流为 Φa Φb ≔ Φa+b → ∀Pa,Φ6G (恒等元为Φ。, 逆元为Φa)
→ G为1P3上的单数微分同胚群.
设M是活移,IR×M是比M高-维的流移(乘瓶衫) (Mn维)
沒中:R×M→M 将telR和PEM变为p(t,p)EM·
後の:R×M→M 特 telR和 peM変为 p(t,p)eM·
Def 13 C [®] 映射 中:1R×M→M称为M上的一个单参微与同胚群 (one-parameter group of diffeomorphisms)
Ž(a) φ _t : M→M是缴分同胚 Vtelk. {¢ telk}.
u) φ. φs = φs Y t.seR. 群乘法为映新的复定。
Clain 2-2-9 隼维的同胚群 Ø ==== C° Vector field V
f: bpeM, φp: R→M是过pe的 余光滑曲线 t=0 km. 10 Φ (D) = Φ(P) = P (D) = P (D
1) ゆ10)=ゆ(0,7)=り。(ア)=り恒等元.

Q:所有的光滑曲线是飞都能由切失定义;量场 命员单参微分同胚群过P岛的轨道(orbh),它在互为10)处的切欠为VIp ⇒ M上的光滑发动 13) V是M上的光滑矢量切 Note: 参数七取某些值时 积油战份s不存在L局部群]. \$2.3 对偶绳场 Dual Vector Field. Def 1. 该V有IR上的有限维先量空间,线性映射 W:V→IR 初为V上的对偶块量 (dual vector) V上鉢对偶缝的集结构V的对偶图,记作V* W(dv+ bu)= XWLV)+BW(U) YU.VEV Ya.BER Claim 2-3-1 V*是矢量空间且dinV*=dimV YWI, WZEV*, VEV Pf: V*上的加法 (W(+W2)(V) == V((V)+W2(V) yweV*,veV, «eIR. 数乘 (αω) lv) ≔ d·ω(v) ⇒戊烷量到 愛か Q(v)=0eR. ₩ ve V 谈(e,1为V的-组基矢,定义V*中nT特殊流表 e™…e™ [对偶基矢]. 使得 ex (ev):= fu, u,v=1,···,n. ex 对数作用+线性 ⇒ exx vife 基外用 下证{e**}是V*的-组藝 (1)e!*---e**很出线性独立. [对偶定等证明:作册基础]

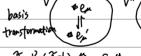
B) YWEV*, 食いル=W(en) ル=1,...,n 以 W=W,epx

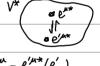
⇒ V*中任-1巷写用{e^*}线性表出,改{e**}是V*的-↑基底


由此 dimV*=dimV {e** }是 {ex}的对偶基底

Review: 拓射空间一同胚 流移-微同胚 矢蝗宫一同构 群-群同构

两个块量空间是引构的(isomorphic), 若两名间存在一一到上的线性映射(同构映射)


两件量空间构合维数相同.


V与V*是同构的:|习构映射可以为由Q,→e^*定义的线性映射.[例选择任夷→同构馈]

・鏨鋏

F: 两边同作用于基底 & basis ((計), Me v*(exi) = (Ã-1), Me v*(AB ep) transformation

 $= \bigwedge^{\beta} \left(\widetilde{\Lambda}^{-1} \right)_{\nu} \stackrel{\rho}{=} \underbrace{ \left(e_{\rho} \right)}_{\beta} = \bigwedge^{\nu} \left(\widetilde{\Lambda}^{-1} \right)_{\nu} \stackrel{\Lambda}{=} \underbrace{ \left(\widetilde{\Lambda}^{-1} \right)_{\nu} \stackrel{\Lambda}{=} \int_{\alpha}^{\alpha} \underbrace{ \left(\widetilde{\Lambda}^{-1} \right)_{\nu} \stackrel{$

矩阵运算一指标左龙重要 转置: 荭交换 .

• 对偶鳗汤与对偶猕基底

若在M上(ACM)上每鲜设了对偶量

即得到M(A)上的一个对偶处量场

M上的对偶乐量的W是光滑的,若W(V)EM 对V光滑发场。

对偏端的举例:fefm则fg以自然地逐导的ML的一个对偶失勤为好(微分)。

定义df→定义对偶%量 dflpeVp* → 给出 dflp(v)eR, HveVp.

dflp(v):= v(f) 且 d(fg)|p = flp(dg)|p + glp(df)|p.

货生板条为(O,4). 第以个生标 MM 6 Fo (O上的光混函数) ⇒ dxm是定义在O上的对偶乐量为

动是Vp的第叶蜥y => Pi有 $dx^{n}(\frac{1}{3\pi^{n}})=\frac{1}{3\pi^{n}}(x^{n})=S^{n}v$

对偶维基底{dxu} 维基底(完).

dxxx是0上第此对偶生析基本的 {dxxx}是0上的一个对偶生标基本的

O上任-爱妈v写借坐标基底(新展下 V=V/5 其中VM=V(XM)为V在该条的生标适

の上任-对偶然量的心可借对偶坐标基底 {dxm}展析 W=W_dxm 期 W_=W(シャル) かい在该外的生物分

Claim 2-3-3 顷[0,4]是甡标弘,f是O上的牝屑总数,n元函数 f(x*,...,x**)= fo y**= f(x)

df可用对偶生标基底 (dxm) 展す df = 3fxx dxm bfe fo

Pf: 两边作用于任一生标基头式和特.

Claim 2-3-4 设生标系{x**}和{x**}的坐标现有交,则庆戏中任-当P的对偶实量似在两些标种的

分量 W_{μ} π W_{ν} 要 接続为 $W_{\nu} = \frac{\partial x^{\mu}}{\partial x^{\mu}} \Big|_{p} W_{\mu}$.

 $W = W_{\mu} dx^{\mu} = W'_{\nu} dx'^{\nu}$

§2.4 独物 Tersor Field.

Dof 1 年量空间V的一个LK·L)型站量(tensor of type (k·L))是一个多重线性映射、T: V*×V*···×V*···×V→V

输入KT对偶K量和LTCC建产生T实数.

weV* w:V→IR w(v) &IR

例 1: 1) V上的对偶矢量是V上的(011)型涨量 veV weV* w:V→IR

內 V的元素v可能作V上的(1.0)型涨量 v=V**:V*→IR.

V(W) EIR

Jv(ki) 転V上針(kil)型強的能 V=Jv(lin) V*=Jv(0.1).

该TeJv(1,1) T:V*×V→R ∀WEV*, VeV T(W;V)ER.

① T(ω;·): V→IR 是V上的对偶矢量

T:V*×V→R

<=> 錠T床, 纥宀ωεV*得到-↑T(ω;·)εV*

T: V*→V*

⑤ 台 结底下后, 结个veV得到个T(·;v)eV T: V→ V

同一35幢看成不同映射的"34量面面观"

·繼延第一썙秋.

Def 2 V上的(k心)型和 (k', U)型张量T和T'的纸量积 (tensor product) T®T'是介(k+k', L+l')型张量

 $\text{$\top\otimes T'(\omega',\cdots,\omega^k,\,\omega^{k+1},\cdots,\omega^{k+k'};\,V_1,\cdots V_{\nu},V_{\nu+1},\cdots,V_{\nu+k'})$:=$\top(\omega',\cdots\omega^k;\,V_1,\cdots,V_{\nu})\,T'(\omega'^{k''_1}\cdots\omega'^{k+k'_k};\,V_{\nu+1},\cdots,V_{\nu+k'})$:=$T'(\omega',\cdots\omega^k;\,V_1,\cdots,V_{\nu})\,T'(\omega'^{k''_1}\cdots\omega'^{k+k'_k};\,V_{\nu+1},\cdots,V_{\nu+k'})$:=$T'(\omega',\cdots\omega^k;\,V_1,\cdots,V_{\nu})\,T'(\omega'^{k''_1}\cdots\omega'^{k+k'_k};\,V_{\nu+1},\cdots,V_{\nu+k'})$:=$T'(\omega',\cdots\omega^k;\,V_1,\cdots,V_{\nu})\,T'(\omega'^{k''_1}\cdots\omega'^{k+k'_k};\,V_{\nu+1},\cdots,V_{\nu+k'})$:=$T'(\omega',\cdots\omega^k;\,V_1,\cdots,V_{\nu})\,T'(\omega'^{k''_1}\cdots\omega'^{k+k'_k};\,V_{\nu+1},\cdots,V_{\nu+k'})$

巯重秋是否满t交换律:汳weV×,vеV,刚v⊘weJv(l,l),wove Jv(l,l)

yneV*, JeV 有v⊗w(ハ;ひ)=v(ハ)w(ひ)=w(ひ)v(ハ)=w®v(ハ;ひ)

但-版 v@w≠w⊗v 例如既晚间中的新矢 v@v(w', w')=v(w') v(w)

* V ⊗ V (W1, W2) = V (W1) V (W2)

Claim 2-4-1 Tv(kil)是失量空间 dim Tv(kil)= 九k+l

Pf:自然定义了v(k,l)上的加法·数乘和零元使其满足了条规则⇒ Jv(k,l)为矢量空间.

取加2,1=2,1=1 沒(4,43)为10的-1基底,(ett,ett)为其在14中的对偶基底

证明介(11)的基底可以由8个支撑成

它们是线性无关的·

G@G@€1x, G@G@€x, G®G@61x, G®G@€x

686861, 6786863x, 6886861x, 6806863x

サTeJv(2)1) T=Tau enのerのeが 其中Tav=T(en, en; en).

毘鱧T在基底~6,0000°°°√下的量.

・张量运算 – 缩弁

(11)型张量分量排的矩阵(T*1)

张量下在任-基底 { e/m ② ··· ⊗ e/m ⊗ e^{l/*}② ··· ⊗ e^{l/*} } 的分量与基底有关。

Te Jv(1·11) T: V→V [线性受球]. 线性变换T+坐板基底 {e,⊗e**} → 矩阵>量アヘン

T=T", e, @e" 與 T", =T(e"@e,)

T'=T', e', e', e', =T(e', =T(e', e').

日-1T在11高加生后的6量对应的两个矩阵(T*1)和(T*1)至为相似矩阵.

矩阵等式 T'= A'TA 由此可知 T'与T 互为相似矩阵. A为生标基文变换矩阵.

矩阵的迹(Trace) T" = 产 T" (11)型继量.

由相似要換 T'm=(A')^pTPoA'm= A'm(A')"pTPo=SoTPo=Tp

→同-(11)型涨量在不同基底下的矩阵有相同的迹。 ※ 34量的与基底无关的性质

T的缩并(contraction) CT:=T"=T(elm; en).

讨论(2·1)型缝T的缩析 T∈Jv(2·1) T=T(·,·;·)

两种可能的缩并 $O(C',T) = T(e^{\mu x}, \cdot; e_{\mu}) \in V$ $(C',T)^{\nu} = T(e^{\mu x}, e^{\nu x}; e_{\mu}) = T^{\mu \nu}$

 Θ C₁T := T (· , e^{ux} , e_{v}) eV (C₁T) = T (e^{vx} , e^{uv} , e_{v}) = T^{vx} .

Def 3 Te Tv(14.1)的第1个上标(isk)和第1个标(jsl)的缩并(i-j contraction)定义为

OjT:= T(·,··,e/*,··,·,·,e₁,···) 要求对从求和

第让權 第广槽

注:0°C;T与基底选择环关。

◎ (kil)型¾量的個-缩并都是(k+1,l-1)型¾量.

例如 veV, weV*,则 voW是(小)型张量 C(vow)是(no)型张量 (标量).

· (νων) = ω,ν/ = ω(ν) = ν(ω) [作用 = 并放: 先本 強 被 再 维 并].

 $\mathsf{Pf} \colon \ \mathcal{C}(\mathsf{V} \otimes \mathsf{W}) = \mathsf{V} \otimes \mathsf{W} \left(e^{\mathsf{M} \mathsf{v}}; e_{\mathsf{M}} \right) = \mathsf{V}(e^{\mathsf{M} \mathsf{v}}) \, \mathsf{W}(e_{\mathsf{M}}) = \mathsf{W}(\mathsf{V}^{\mathsf{M}} e_{\mathsf{M}}) = \mathsf{W}(\mathsf{v}).$

em(v) = em(vaen) = pm sm = vm

b) C2(T@V)= T(·, V)
(c) C2 (TOW) = T (·, w;·) YWEV*, TEJV (2,1).
张量变换律.
M中任-宇的切空间 Vp的舒体(kil)型张量的集合为Tvp(kil)
流形上{xx*}饱和 = 特殊基实:「汞」为以的生标基底 「dxx*]为以的对偶生标基底。
$T = T^{\mu\nu}_{\sigma} \xrightarrow{\partial \chi_{\sigma}} \otimes \xrightarrow{\partial} \otimes d\chi^{\sigma} \ \ \downarrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow = T(d\chi^{\mu}, d\chi^{\nu}; \xrightarrow{\partial}) \qquad $
Claim 2-4-2(k儿)型张量在两个坐标券的分量变换关系(然量变换 律).
A) the Time = anim ani anim Tag
拆 Vũ V⊗N — (2,0)型¾量 V'U', V'U², V'U³, V²U¹, V²U³, V³U¹, V³U², V³U³, V³U³
[辽邙新州王孙[红河运算] 70 + 00 9个数在坐厕变换下燃料变化
[VV并列且介作行为运算] TV + VV 9个软化的变换 > 规模化 在流移M(成ACM)上每5站定-个(k,l)型继量,即得到M(成A)上的一个(k,l)型强量场
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(我ACM)上每5指定-个(kl)型继量,即得到M(或A)上的一个(k,l)型强量场
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V
在流移M(成ACM)上每5站定-个(k,l)型然量,即得到M(成A)上的一个(k,l)型涨量的M上涨量场 T 於光滑的,花 H光滑对偶矢量场 W1,wk及光滑矢量均 V1,V,在下(w'wk, V1V

Q: 弯曲时室度规在10岁13-基底下仍是对角土1?

§2.5 度视矢量切 Metric Tensor Field. Pet 1 矢量到PV的一座规 (metric) g是一个对称的. 非匙化的(0,2)型做量. 1) g is symmetric $g(v_1u) = g(u_1v)$ e) g is nondegenerate g(v,u)=0 $\forall u \in V \Rightarrow V=0.6V$ Note: 茏 g非玉化,则它在V的住-基底 {&}的分量 gm=g(&,ev)排成的矩阵非玉化 (冇羽忒料零) 艺V在基底使多的分量非是化,则多非是化 国内积 (VIV)マロ 等域立组収当 V=0 度规 g(v,v) 可负且g(v,v)=0时不定v=0 —— g(v,u)被称为V和U在度规引的外状. Def2 ve/的版 (length) 敦小(magnitude) 完必 |v| := Vg(v,v)| U.VEV 至相政 (orthogonal) 若g(v,u)=0 V的基底[cu]是正交归一的(ovthonormal) 若任-基文正及且每-基实以满足g(su,eu)==1 Note: 度视 g在政阳-基底的分量满足 gm = g(e,e) = go 如和 ⇒ 夏规在政治-基底的分量排成的矩阵是对触矩阵且对角元为+13-1 Clain 2-5-1 任何带度规的失量间都有政归一的基底 · 良椒S03 对触矩阵耳对角心中+1和-1的个数歹所些正页归−基底え关. · 康桃. 绳与空间的分类 Def 3 用政归基底写成对角矩阵 小对角形约 1的度规 — 正路 (positive definite) 或藜曼的 (Riemannian) 內对角元子的展现一页定的 (negotive definite) 其杂联 一不定的 (indefinite)

(4) 医脱双角元之术 - 5差 (signature) (-1,+1,+1,+1) 3差3+2 (+1,-1,-1,-1) 3差3-2.

13)只有一个对角元为一的不定度规 一洛伦兹的 (Lorentzian)

Def3 带微敏度规身的外量空间V的添河的步类

- ①满足g(v,v)>o的v- 繁瞳 (spacelike vector)
- ②滿足g(v,v)<○的V-类時失量 (timelike vector)

无论有无度规g,V与V*都是同构的.

Defs 流形M上的对称的,处外非显化的 (0.2)型涨量场际加厚规涨量场 ⇒ (M.g.)

曲気が真定义 (IP+ Euclidean metric =) (E²). IE² (な)²+ (dy)² = $\left[\left(\frac{d\pi}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right]$ olt ToClth功夫 アプロ

= [(T')3+(T2)3] dt2 = dl=|T|dt C(t)线k l= |T|dt

指下至带有正度规则的任意流移M上 l= ∫√g(T,T) dt.

考虑带有涂铅度规切g的流移M:

C!曲线 CL4)各鱼的切矢都类空/类时/类光,则 CL4)为类空/类时/类光曲线

Def b 设流形M上有洛仑兹度规场子,则M上的类空、类光及类时曲线CH的线板定义为

注:以类粒线煅始终炒塞

- 內 "不伦孙类" (从类时到类至氧仅转)的曲线线状没有定义
- 內 曲线的线状与其多数化无关 [重多数化不改变线长].
- θ 曲效的线长与生标系天关,引借助生标系计算 $g(T^{\mu} \stackrel{\partial}{\partial_{\mu}}, T^{\nu} \stackrel{\partial}{\partial_{\mu}}) = T^{\mu}T^{\nu} g(\stackrel{\partial}{\partial_{\mu}}, \stackrel{\partial}{\partial_{\mu}}) = g_{\mu\nu} \frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial t}$

Tⁿ= dxⁿ 曲字切实的全标分量等于曲线在该条的参数前对参数的导数.

元教は dl= Jlgmodamdam 31入 ds= gmodamda	(线元(line element)] 正际定
⇒ 线k l = {√ds' · 对类曲线 ds'=(dl)'	良规的坐标造
√-ds ² 对类时蛾 ds ² =-(dl) ²	
打于Clto)和Clto)之间的曲线段线长(以)= ft. T](以) dt	了以作为曲线的线长参数
T=T(U) 歯线切灰 g(T,T) =1 (単純) 线炬-虹似	切头的镀
Def 7 设流移M上给定感忧场g,则(M.g)叫「义馨宴室园	
11) 为正定的,则 (M.g)为黎曼宝的 (Riemannian space)	
以 g为负定的,则 (M,g)为伪黎曼空间 (pseudo-Riemannia	n space). = 时堂 (spacetime).
广义黎曼空间的两个例子: 欧氏空间与闰氏空间。	
Def 8 沒(x^}是R*的自丝栎,在R*上沒以度稅%量场分2	\$ S = Sou damedan
Ry (IR ⁿ , 8) 務めれ維政氏室国 (n-dimensional Euclideon spa	(4) 分孙为跃跃度规》
Note:⊙S在自丝坐桥糸的对偶坐桥墓底 idaო⊗ daო╕目	约分量为 8,111 = 80 1140
④线元惠达试 ds²= Sundamdan	$n=2 ds^2=(d\pi^1)^2+(d\pi^2)^2$
● 自然坐标基底 (デー)用欧城规划 3 销量是正列	目的.
$\delta(\frac{\partial}{\partial R^{\alpha}}, \frac{\partial}{\partial R^{\beta}}) = \delta_{\mu\nu} dR^{\mu} \otimes dR^{\nu}(\frac{\partial}{\partial R^{\alpha}}, \frac{\partial}{\partial R^{\beta}}) = \delta_{\mu\nu}$	$\int dx^{\mu} \left(\frac{\partial}{\partial x^{\mu}} \right) dx^{\nu} \left(\frac{\partial}{\partial x^{\mu}} \right) = \int_{\partial x} dx^{\nu} \left(\frac{\partial}{\partial x^{\mu}} \right) \left(\frac{\partial}{\partial x^{\nu}} \right) = \int_{\partial x} dx^{\nu} \left(\frac{\partial}{\partial x^{\nu}} \right) \left($
满长 f(n, n)= fan 的坐标系(颐归躯)和是自	坐生标 称。
御加 x=x+a,y=y+b (a,bb常数)	平移 (translation)
X'=Xcosa+ysina y'=-Xsina+ycosa (以为常数)	转项 (rotation).
x'=-x y=y' / x'=x y'=-y	反射 (reflection).
)ef 9 n纤软低空间中满足 f (赤, 赤)=5~ 的生林外叫笛	卡尔(Cartesian)坐标系或直角坐标系
Note: O 一个生标系为笛卡分的 , 若其生析基底用时(C)声规(G)像	量为政归一
@ 2维欧维国中任意两个笛标系三间的关系只能为	平移,旋转,反射.

② 2/维欧氏室间中非笛卡尔坐标糸: 粉坐栎糸 (Υ)
基底 {e, eq 正列 (e= y=) 但猕基底 (示, 声) 利于 f(赤, 声)= r=
Def 10 io (n^)是R*的自然生标,在R*上定义医规划量场 N>= Noo dan⊗dan
『 (IR ⁿ , N) 務めれ維闭氏空间 (n-dimensional Minkowski space) Y新知识氏疾规
Note: ① N 在自然坐桥系的对偶坐桥基底 {dx→@ dx→{的分量为 1/m = { 1 /m=0=0
③线元表达式 ds²=1/wodqqdqv
n=4 ds==-(dx0)=+ (dx1)=+(dx1)=+(dx1)= 4维闭氏环空的线和一张X相对泡中的元间
②自然生标基底 (三元) 用风碗机儿们量是正剂王的 (第0纸基针3-1, 颗归+1)
$N(\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}) = N_{\alpha \alpha} dx^{\alpha} \otimes dx^{\alpha} (\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}) = N_{\alpha \alpha} dx^{\alpha} (\frac{\partial}{\partial x^{\alpha}}) dx^{\alpha} (\frac{\partial}{\partial x^{\beta}}) = N_{\alpha \beta}$
满足 N(云, 300)=Nap的坐标系(政归辐)和是自坐坐标系(tan).
伊加 ビ=t+a,x'=x+b (a,b的戦的) 平移(translation)
t'=tch\+xsh\ x'=tsh\+xch\ (入为常数) 伤较动(boost)
t'=-t, $x'=x/t'=t$, $x'=-x$
Deflo n维闭战空间中满足 V(益, 益而)=Ve的生桥系以治纶兹(Lorenzian)生标系式伪笛卡尔生标系
Note: O 一个坐标系为沦落的,若其些标差底用闵钦家规则维量为正约— (pseudo-Cartesia)
② 2维闵俄宝闰中任惠两个洛宅获条之间的关条只能为平裕。份转说, 反射.

§2.b	搬猫标记	号 The 1	¥bstract I	ndex	Notation .			
뇀	指标 :						Tが頻	指标
j. (l	(ル)型3種一.	LT-指标各用k	「私して起こ	哆里	Va	代表量	Wa代表对偶	建。
3	嵯等式 0	$(u^{\alpha} + v^{\alpha} = \omega^{\alpha})$	(不列	かんぱ	a+vb=wa)			
2 4	福年 一重复上	下抽象指 标						
1	Ta = Tlem*;	en) = T^n,	/ Taba=	Tlex	(, · ; e _{ju})	eV /	Tab _b = T(•, e	, e _m)∈V
	這秋记站略							
7	TG JV (211),	S & Jv(1,1)	R) T (9S =	Tab S	d _c		
Ú	= (N,N) √(⊗c	w(v),u(u)=	Wa Va Mbu	ub =[Wall Van	b = [U _b U	va va ub	
				⇒ l	Na Mb = Mb	Wa (帯	 着自己的抽象	指标改换)
J	18M (n·n)=	/u(v)w(u)=	Mavawb	л ^b = [uawb V ^a u	b = Wb/	ua vaub	
				⇒ /	MaWb = W	b/Ma	•	
U	ν⊗ν≠ν⊗ν	→ Way	b \$ Naw	b .				
4. 31	量的量相应	述林用小号;	椭绿	μ, υ, ο	中一具	件描标		
٦	Tabc = TMV ((e))a(e))b(e	ا ط(ح	where	Tuv =	T ^{ab} c (e	$(a)_a(e^{\nu})_b(e^{\sigma})$)°
注:	Tegv (0,2)	T(•,en)=	C'LT®	e _{jn}) =) C'2 [Tal	,(Gu) ^c]=	= Tob (Gu) =	Tou
	故TaiTar	代表MT对	贱,	Tan t	(表第//1)	对偶烷量		
S . 31	蓮面面 观	Tab: V→ V	′ τ'	b Vb	εV			
Ţ	e Jv (111)	Tab: V*→	V* T	ъ Wa	e√*			
以	(子4)代表从1	/到V的恒等	珠轩	Sab 1	/b == Va	Anp e	V	
	<i>\\</i> \	/*到 V*的恒等	映射	8°b V	No:=MP	∀w _a e	٧×	
So	65任-36董维	拼的结果是	PI 浪泺量	的丛	亦b换成a	(就把下	标a换成b)	5° 6 T = T

 S^{a} 」在此基底上的分量 $S^{a}_{\nu} = S^{a}_{\nu} (e^{\mu})_{a} (e_{\nu})^{b}$ 满足 $\begin{cases} +1 \\ 0 \end{cases}$ (V, gas) b. gab ∈ Ju (0,2) gab: V → V* y g(·, v) = C'2 (g@v) = C'2 (gab V°) = gab Vb = Va €V* $V^a \Leftrightarrow g_{ab} V^b \equiv g(\cdot, V) = V_a$ U与V*在尽构映射(度视)g:V→V*自然认同 Va=gab Vb E Vx. 2) Va = gab Vb EV* g ⇒ g-1: V* → V Vb = gab Va ∈ V 12,0). 3) $V^{c} = (g^{ca} g_{ab}) V^{b}$ $g^{ca}g_{ab} = S^{c}_{b}$ $w_{b} \Leftarrow g^{ab} w_{b} \equiv g^{-1}(\cdot, w) = w^{a}$ 0gab与gab对上下指标分割做"下降"和"上升"处理. Wa = gab Wb & V lower/raise the index. 1) to goot be = T cae. Va=gabVb Wa=gabWb ② gab 为 gab 的逆映射 ⑤ 純量等式 gca gab = Scb ← 分量等式 gangua = SMo izef. gur gro = gab (er)a(er)b god (er)c (er)d (er)b(er)c = 5cb = gab (e") a god (es) d = (e") d(es) d= smo 度规gw的非显化性⇒ gw在任-基底下的分量gw组成的矩阵(gw)的非遇吡性 gab在某一基底{(en)a}及其对偶基底{(en)b}下的分量矩阵(gnn)非退化⇒ (gnn)有逆 ⇒ gab=gar(en)a(er)b 满足gabgic=5ac gab百逆映射→非是化

⇒ 真舰最真遵的分量 g加县 g加可可站置的上下具体指标1做下降和上竹处理 .

{t, x, y, 2} M=011.213 1=1.23 些标基实 $\left(\frac{2}{2\pi^{\alpha}}\right)^{b}$ 对偶基矢 $g_{ab}\left(\frac{2}{2\pi^{\alpha}}\right)^{b}$ 7 $\Rightarrow g_{ab}\left(\frac{2}{2\pi^{\alpha}}\right)^{b} = g_{av}\left(dx^{\rho}\right)_{\alpha}$ 对偶塞矢 $(dx^{\mu})_b$ 等 些标塞矢 $g^{ab}(dx^{\mu})_b$ $\xrightarrow{3}$ $g^{ab}(dx^{\mu})_b = g^{a\nu}(\frac{2}{2\pi})_a$ 1) gab= Sab 欧氏庚杷) + {x** | 为笛卡齐孙. $\Rightarrow \delta_{ab} \left(\frac{\partial}{\partial x^{\mu}} \right)^{b} = (\partial x^{\mu})_{a} \cdot \delta^{ab} \left(\partial x^{\mu} \right)_{b} = \left(\frac{\partial}{\partial x^{\mu}} \right)^{a} \cdot$ e) gab= Nay 试纸度规 + 《狐子为洛金兹系 $\frac{\partial}{\partial x^{b}} \left(\frac{\partial}{\partial x^{c}} \right)^{b} = -(dx^{c})_{a} \qquad \begin{cases} \eta^{ab} (dx^{c})_{b} = -(\frac{\partial}{\partial x^{c}})^{a} \\ \eta_{ab} (\frac{\partial}{\partial x^{c}})^{b} = (dx^{c})_{a} \end{cases}$ 张童比指标一逆变指标(contravariont index) 笑如一逆变发 张敻T疳标一协资指标(covariant index) 巩陽矢鼍wa 一协实党 ,36量的对称性. Def 1 T∈Jv (0,2) 粉为对称的(symmetry) 若T(u,v)=T(v,u) Yu,v∈V $\frac{T(v,u) = T_{ab} V^a u^b}{T(u,v) = T_{ab} U^a V^b} = T_{ba} u^b V^a}$ Tab与Tba: 当Tab=Tbaff graTab=Tcb graTba=Tbc 即Tcb=Tbc. (川)型张量对於→对应的(0円)型%量对称 Sar= Sra Def 2 [0.2]型班里Tab的对称部分T(ab)与反对称部分T[ab]分别是 Tab=T(ab)+T[ab] $T_{(ab)} := \frac{1}{2} (T_{ab} + T_{ba})$ $T_{[ab]} = \frac{1}{2} (T_{ab} - T_{ba}).$ Tcabe) = 1 (Tabe + Tcab + Tbca + Tacb + Tcba+ Tbac) Trabel := 1/3! (Tabe + Trab + Thea - Tach - Trea - Thac)

(o,l)型张量 T(a,-a,)=! 元Toruyaruyaru) 778(1,,l)的种排列 是对排列标和.
$T_{[a_1\cdots a_l]} = \frac{1}{L!} \sum_{r} S_{r} T_{a_{r(i)}a_{r(i)}\cdots a_{r(i)}} T_{i} S_{r} T_{i} T_{i} $
Claim 2-6-1
W) Ta,···a=T(a,···a) [年刊於] ⇒ Ta,···a=Ta,···a,··BP T(a,···a) 展刊しい項科等于Ta,···a.
U) Ta,···a,=Tra,···a,][银对称] => Ta,···a = fxTaxin···axin
即 T _[a,a,] 展示文中 偏排列项 = Ta,a,
Clain 2-6-2.
(a) Tta,···ai] Sa····ai = Tta,···ai] Sta···ai] = Ta····ai 对移民理
的括5内同种子括5印通竞增州) TECabic]=TCabc].
(4括3内加异种括3待塞. T[(W)c] = 0.
(d) \$种括号缩并得零 T (abc) S [abc] = 0
(e) Ta,-a= T[a,-a] => T(a,-a) =0
$T_{\alpha_1 \cdots \alpha_k} = T_{(\alpha_1 \cdots \alpha_k)} \Rightarrow T_{\alpha_1 \cdots \alpha_{k-1}} = 0$

夡璋	黎曼	(内稟)	邮轮	量
ルノキ	半又	いがん	47/	

Chapter 3 Intrinsic Curvature Tensors

§3.1 导数算符 Derivative Operators

 $\vec{\nabla} f = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z} = \text{gradient of } f \text{ [梯良]}.$

$$\vec{V} = \hat{i}V' + \hat{j}V^2 + \hat{k}V^3$$

 $\vec{v} \cdot \vec{v} = \frac{\partial \vec{v}'}{\partial x} + \frac{\partial \vec{v}^2}{\partial y} + \frac{\partial \vec{v}^3}{\partial z} = \text{divergence of } f[$ \text{this}]

矢量Va与对偶线量Va=SadVblestill >维欧氏空间中的导数算符页

Def 1 以于M(比)代表流形M上全体C°的(比)型张量场的集后

[函数f9看作(0,0)型张量场(标量场),故于m(0,0)=于m].

映財 Va: JM(K,L)→JM(K,L+1)称M上的(无税)字数算符 (torsion-free derivative operator)

芳皂满足以下条件:

19 具有线性性 Pa(XTb-1-bk c1-c2+ βSb-1-bk c1-c2)= XPaTb1-1-bk c1-c2+ βPaSb1-bk c1-c2+

的具有革命尼茨律 な(Thimbe Gamas Salands) = Thimbe Ta Salands + Salands Va Thimbe

ら多维并可交换顺序 Co7=7·C [Ta(VbWb)=VbTaWb+WbVaVb]

d v(f)=VaVaf bfeJm, veJm(o;i) Vaf=(df)a为长数f组的对偶频为

va为欧氏空间中红-矢量场,其在笛卡分坐标基底下的展示式 va=v'(3)*+v2(3)*+v2(3)*+v2(3)*+v2(3)*+v2(3)*+v2(3)*+v2(3)*** アンションファン・ハー (水, 506) 対数f的作用 $v(f) = v' \frac{\partial f}{\partial x} + v^2 \frac{\partial f}{\partial z} + v^3 \frac{\partial f}{\partial z} = \vec{v} \cdot \vec{v} f = V^{\alpha} \nabla_{\alpha} f$

ley 具有无挠性(torsion frae) Va Nof= No Vaf

Vf EJM.

满足条件(a)-(d)而不满足(a)的导数氧符积为有抚导数氧符(广义相对论中不使用)

(VVf)(u,v)=(VVf)(v,u) VU,VEJ(10) 即VVf是个对務的(02)型紙量.

·鞍鞒的作用

O任意两个导数算符双和宽作册目-改数f [10.0)型独量场]的结果相同 Vaf=(df)= Vaf

@作肘对偶懂物[(叭型缝动] W,W'∈ FM(叭)

作明,乐量场 [(1.0)型线量场]. →作用于(1.6.1)型张量场

	满是 PEM外对偶线 1/2 使 Ws/p= Ws/p= Ws (Ws和Ws裕的从在M上的两个较拓)
	[VaWb]p , [VaWb]p-般并不相等 (Pa-Va)Wb是RaWb-VaWb的缩号
	Claim 3-1-1 Va具有同限性
	设TiToe9MCHU在PEM的耕城N内租等,即Ti/N=Ti/N,则VaTi/p=VaTi/p.
	Claim 3-1-2 该PEM, Wb. Wb'EJ(O1) 满たWb' p=Wb p P [(Va-Va)Wb']p=[(Va-Va)Wb]p
	Pf: 产证明[Va(W'-Wb)]p=[ra(W'-Wb)]p 淡公=W'-Wb 则(Gb(P)=0 =) Spa(P)=b
	[Vasib]p={Va[squ(dxm)b]}p=[squ(dxm)b]p+[(dxm)bVasiqu]p
_	
和	[Vasis]p = [(dxm)b Vasin]p Z 由于[Vasin]p=[Vasin]p (MVa)
	(M, Na) P Ve* 意义: Nb EVp*, Wb 为从在M上的一个矩阵,即Mb=Wb p
	Claim 3-1-2 [(Va-Va) Wb]p K依赖于Walp
	EP(微-Va)是将ps的对偶K量Wolp变为ps的(O)以型法量[(Vã-Va)Wo]p的线性映射。
	(va-Va)p: Jvp(0,1) 対 Vp* → Jvp(0,2) [1主治い].
	上P鱼的(1/2)型缝 C°ab [[Va-Va)wb]p=C°abwclp (0.2)
	Claim 3-1-3 $\nabla aw_b = \nabla aw_b - C_{ab}^c w_c$ (at $\forall p \in M$) $\forall w_b \in f(o_{i1})$.
	$C(ain 3-1-4)$ $C^{c}_{ab} = C^{c}_{ba}$ [V_{a} 的无挠性中导致3 继重场 C^{c}_{ab} 的对称性].
	Claim 3-1-5 Vavb = Vavb + CbacVC (at Upelly) & Ub & f (1,0).
	VaTbc = VaTbc + CbadTdc - CdacTbd.
	Claim 3-1-b VaTbi-be = VaTbi-be + & cbi dTbi-de - & CdacyTbi-be VaTef(kl
	例: 沒 {xu}为M上的坐标冬,其些标墨版和对偶墨版分别为{(赤)*{和 {(dxu)*}
	在生标城0上定义 蛛射 $\partial_a: \mathcal{F}_0(k;l) \to \mathcal{F}_0(k;l+1)$ $T^b{}_c \in \mathcal{F}(l+1)$ $T^b{}_c = T^a{}_a(\frac{3}{37})^b(dx^a)_c$.
	JaTo = (dam)a(zav)b (dar)c JuTo 其中JuTo = シTo
	「強量物导数的生标分量等于张量的的生标分量对生标的偏导数】

①任-對於的私作的	好该条的任-学标基矢和任-	对偶基矢为0	$\partial a \left(\frac{\partial A_{i}}{\partial a} \right)^{b} = 0$	$\partial_{\alpha}(dx^{\nu})_{b}=0$
o da du Tocie	∂a∂bT:= ∂b∂aT:			
Da是一个依赖生标	涤(OM)的铅鳞符—	普遍导数算符 (ord	linary derivative o	perator).
	娇冬的导数算符 — ting		•	
Def 2 该 da是(M/1	Va)上任给的坐桥条的普通导	数算符,则体现	72与20差别的(张勋) C°ab
	的竞码 CChristoffel symbo			
Note: 18 Aby B	映射语言 [1 ^{r]} da — 标变换 [xr] dó —	→ P ^c as O作为多	媓 依赖性标	
MERX \	桥变换 (水) 2á—	→ P cab 0 不是3	ぬし アルタアル	不按此量变换律变化
继 铢	(水**) 坐标条(水**) 薆	碘律.	基础(2013	与{神}种的既符。
Tab Pan	V ← Ponu !	斧仓.		
Pab Pau	V ← Po'n !	存记		
纸样比特格	赖的**量.	符定.		
$\{\chi_{n}\} \rightarrow \{\chi_{n}\}$	f 乾特 P°as→P°as.			
	「乾晴 P°ab→ P°ab. 一般犹皇 C°ab不变 生	麻達でル→ C'w		
同理 炒为%量场) JaV ^b to是坐标很极的地量	Vav ^b 是与坐桥系形	的站量 .	
$\Lambda_p = \Lambda_n \left(\frac{9 \lambda_n}{2} \right)_p = \Lambda_n$	$\int_{\Omega} \left(\frac{3 \chi_{n}}{3} \right)_{p} \cdot \int_{\Omega} 9 \Lambda_{p} = \left(q \chi_{p} \right)$	ې تاميره ط(ميرو) ۵(JaVb + Javb 导	気 V ^V ,μラ V ^{'V} ,μ 不満足然量戛换律
	∂å∨ ^b = (d⊀ ^b	1)a (2/10)b 2/100	[其种 <u>20"</u>	" " " " " " " " " " "
U,是和Vb的纳	瞳. Vavb=(dxt	u)a(3/1)bVV;,,]	$\nabla_{\mathbf{a}} \mathbf{V}^{\mathbf{b}} = \nabla_{\mathbf{a}}' \mathbf{V}^{\mathbf{b}} \mathbf{S}$	マンプルランプラッ 満足就量要使得
	すら量 . ∇ά∨b= (dá			
Claim 3-1-7 V"; p	= V 1 pr V -	WV:,M=WV,M-[No Wo	
Claim 3-1-8 度以1	条件(9) V·C=C·∇ ←	Vafbc=0		
斯 8°c为(111)	型继量场,在VpeM定义为	8pc Nc=Np A	vceVp.	

Claim 3-1-1 [U.IV]a=UbVbVa-VbVbUa 其以是任无税导数算符. = Ub (VbVa) Vaf + Ub Va VbVaf - Vb (VbUa) Vaf - VbUa VbVaf a+b 在根性 VbVaf = VaVbf [u,v]a Vaf = (ub VbVa - VbVb Ua) Vaf 故 [u,v]a=ubbbVa-Vbbbla 83.2 矢量物治由线的导数和平移. Derivation and Parallel Transport of a vector along a curve 3.2.1 灰量物治曲线的平移 Parallel Transport of a vector along a curve Def 1 诙 Va 是治曲线 Clt)的 欠量物。 Va 称为治Clt) 辨的 (parallel transported along Clt)) 若Tb D Va=0 斯 Ta=(是) 是曲线的切失。 TbVbf=T(f)=0 函数f治Tb(即治CH)的导数为零 ⇒ f治CH)取值为常数 TbVbVa = 0 矢量物Va沿下的导数效 Claim 3-2-1 设曲线CL+V位于生标系仅个Y的坐标域内, 曲线的多数式为农(+),全Ta=(是)a,则治C(+)的转动Va 満足 TODVa=(シカル)a(dva+ParTVVの) Pf: Tb DbVa = Tb (dbVa + PacVc) = Tb [(dx"); (\frac{2}{2700})^a dvVu + PacVc] = T^V(2m)^a 2Vⁿ + T²xc T^bV^c (S_bT^b=SvT^V 重复抽象指标可直接换成具体指标) = (sm) [TV sm + PNo TVV] TV 为曲较快下的生物分量 $\frac{\partial v^{n}}{\partial x^{\nu}} \frac{dx^{\nu}}{\partial t} = \frac{dv^{n}}{\partial t} = \left(\frac{\partial}{\partial x^{n}}\right)^{a} \left[\frac{dv^{n}}{\partial t} + \left[\frac{\partial}{\partial x^{n}}\right]^{a}\right]$ 平移定义 TOTOVa=O ⇔ dva + Puo TVvo=O ルニ1,2···n

为n个失于v从(+)的-M常做方方程+初龄条件⇒存在唯一解.

Claim 3-2-2 曲线上-点Clta) 及该点的一个是 14 (由)决定唯一的沿曲线平移的矢量场 14 (t).
M. Jua Tio Ve P. 9 EM Vaello Uaela. Valua F这比较
p (M,Va) buae b 曲线Clt)上有作的平移矢量的满足在PE值为Va
在251函 Va € Ve → 映射: Vp→Ve 依赖于曲线Ct+)
联络(connection) Va 在 Vp 与 Ve, 建己新曲线依赖的联系
3.2.2 与良规相运配的导数算符 Derivative Operator associated with a metric
(M, Jab, Fa) Ta为曲线Ctt)的切矢 度認Jas ¬内於.
使帮概名与欧松空网平移保持一致,补充要求:两个矢堂"干移"时"内积"不变
∀Va,ua滿仁 Tbobva=0, Tbobla=0 ⇒ gablavb(=lava)在C(+)上为常数.
⇒ 0= TC ∇c (gob UaVb) = gob Ua TC ∇c Ub + gob Vb TC ∇c Ua + La Vb TC ∇c gab must vanish
补壳要求对所有曲线及治它平移的任意两个矢量均 ua, vb都成立 ⇔ 对联络阿加条件 Vcgab=0
Claim 3-2-3 流盼M上选度规切 gurt,存唯的 to 使 Paguc = 0
满艮Vagw=0的Va 称为与guc适面0(相塞)的导数算符(联络)
Pf: Vague= Pague - Cdabgde - Cdaegba = Pague - Ceab - Chac=O Cobe 下的竹档标对称
$C_{cab} + \underline{C_{boc}} = \widehat{\nabla} a \widehat{g}_{bc} \text{ii}. \qquad C_{cab} = \frac{1}{2} \left(\widehat{\nabla} a \widehat{g}_{bc} + \widehat{\nabla}_b \widehat{g}_{ac} - \widehat{\nabla}_c \widehat{g}_{ab} \right).$
b+a Ccba + Cabc = Vb gac 13 b+14-13. Cab = gcd Cdab = = gcd (Vagba + Vb gad - Vd gab)
cab Coca + Cocb = Pegab. 13
若有प滿足प $g_{\kappa}=0$ 则反映 Γ_{κ} 则的 $C^{c}_{\omega}=0$ 当 唯一 Γ_{κ} Q.E.D.
Va → da Ccab → Tab Tab = = gcd (dagod + dogad - dagab).
推导企量式: Pau=Pab (dar)c (m) (2011)b
= \frac{1}{2} (dx \sigma) c (\frac{2}{27} \tau)^2 (\frac{2}{27})^2 g \text{ od } (da g \text{ bd + db } g \text{ ob } - 2d g \text{ ob })
= \frac{1}{2}gop (dugup + dugup - degun). On the bod core

対称 アプル = = 1 gop (gup. ル+ gmp. v - gmu.p) = アプル. ル.v.の= 0.11213.

along a curve of a vector field

3.2.3 矢量场沿曲线的导数与沿曲线的平移的关系 Relation between derivative and parrallel

U. 欧的空间(IRM, Sab). 笛片外中定义大量的绝对"平移(非曲线依赖)

悄[[(M·Ta)上往園戦(th)] Va沾Tb[(th)]的特数 Dva = Tb Tb Va Va

ウ 対性的 (IR*, Vab) dc Vab=0

[洛维松标》中的普遍导数算符].

Claim 3-2-4 该 VA是(M, Va)的曲线CH)的爱切, Tb是CH)的切欠, P. C是CH)上的邻鱼

υ tφ).

ŷa|p是Va|q治CU)平移至P些的结果.

§ 3.3 测地线 Geodesius

Def1 (M,Va)上的曲线Y(H)叫测地线 (geodesic) . 若\$切失 T^a 满走测地线;程 T^b 见 T^a =0

①测地线 Y(t) (A) Y(t) 的切实沿曲线Y(t)平移.

②广义攀曼空间(M·ga)中的测地线是指(M·Ra)中的测地线,其中尼与gab运图已

③测性线标准、Thrata=o treet标准为TM= dxmth

测地线方程的坐标分量表达式 $\frac{d'x^{\mu}}{dt^{\nu}} + \Gamma^{\mu}_{J\sigma} \frac{dx^{\nu}}{dt} = 0$ $\mu=1\cdots n$

河的度规在治维基生标系下的克斯符 > 测地线方程 dx = 0 x*(+)= a*+b*
例2: S² 3维联战强间中的2维球面. χ=rsinθcosγ y=rsinθsinφ z=rcosθ 笛称, 环球称. (S², gab).
(対元 ds'= dx+dy+dz== dr++r(de+sin2θdφ+)
无线段在穿面S²L r=const(R) dr=0 ⇒ 标准球面线元 ds²= p²(dơ+sin²0dφ²) ⇒ 滄哥康稅
⇒ 庚规 g·ω在坐标基底 {(赤)*,(赤)*) 6量为 g·ω= R² g·ev= R²sin²0 g·ov= g·ov= -0.
以度规 gu 进行後于量,环面上的大圆弧为洲地线·
・測世线月曲线参数.
Claim 3-3-1 设测地线 Y(t),则其重参数化 Y'(t)的切失满足 (《为在Y(t)上的某一函数)
$T^{b}P_{b}T^{a}=o\ \Rightarrow\ T^{\prime b}P_{b}T^{\prime a}=\alphaT^{\prime a}$
Pf: $T^{\alpha} = \left(\frac{\partial}{\partial t}\right)^{\alpha} = \left(\frac{\partial}{\partial t'}\right)^{\alpha} \frac{\partial t'}{\partial t} = T^{\prime \alpha} \frac{\partial t'}{\partial t}$
$0 = T^b \nabla_b T^a = \frac{dt'}{dt} T'^b \nabla_b \left(\frac{dt'}{dt} T'^a \right) = \left(\frac{dt'}{dt} \right)^{\nu} T'^b \nabla_b T'^a + T'^a \frac{dt'}{dt} T'^b \nabla_b \left(\frac{dt'}{dt} \right).$
$\Rightarrow T^{\prime b} \nabla_{b} T^{\prime a} = -\left(\frac{dt}{dt}\right)^{\prime a} \frac{dt^{\prime b}}{dt^{\prime b}} T^{\prime a} = T^{\prime a} \frac{dt^{\prime b}}{dt} \frac{dt^{\prime b}}{dt^{\prime b}} = T^{\prime a} \frac{dt^{\prime b}}{dt^{\prime b}}$
=α. 非個1多數化的測性线·
Claim 3-3-2 设曲线Y(t)的切线Ta满足Tb以Ta= xTa 则存在t=t(t) 使得Y(t)为测电线
Def 2. 能使曲线成为洲地线的参数形为该曲线的信息参数(affine parameter)
Claim 3-3-3 若七是某洲地域的信射参数,则该线的任一参数七是信的参数 👄 t'=at+b (a+o)
Claim 3-3-4 带联络的流移 (M.Va)的-巨P及P巨的一个矢量 V***决慎一的测地线 Y(t),满足
リソロコーP ay YH)在PE的切矢等于UR.
Pf: 任职一个生标系(2个7位)在PE的切灭等于UR. 及了 10)= P
$\Rightarrow \frac{dx^{\prime\prime}}{dt} + P^{\prime\prime} \frac{dx^{\prime\prime}}{dt} = 0 \qquad \text{n.} \uparrow = \text{p.f.} \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\chi^{\prime\prime\prime}(o) = \chi^{\prime\prime\prime} p$

例上: 区代度规在笛铃生排下的充版 \Rightarrow 汉州地线方程 $\frac{d^2x^n}{dx^2} = 0$ $\chi^n(t) = \alpha^n t + b^n$ [直线]

考虑(M, Va, gub) 通常性 Vc gub=0
科教達 TBDTa=0 则 TCVc(gabTaTb)= gab TaTCVcTb+ gab TbTCVcTa+ TaTbTCVcgab=
⇒ 平移失量的自我内科 goota To 为常数 治测地线不变多 ⇒ 分类
曲线(测地线)的切矢满处 gatato >0 曲线切矢 类壁 医规 gan 为治疗症的情况下
治V弘的· < O
Claim 3-3-5 (非类光)测性线的线长多数处约病质参数。 (不存在"不作不类"曲线)
Claim 3-3-6
组约当曲线的线或取附值(extremum).
Note: 因变量为线似_, 自变量为曲线 [微元为曲线之间的独列变化].
沒函(functional) 剪方理屯:し取陂值⇔し的变分SLか燮。
いけに gab 为正定真状):(IRM, Sab) P 2 minimum → extreme → geodesics a to define the pole (n) with the first pole (n) to define (s) to
极值可以既非极小又非极大· Counterexample: S ² Southpole(5)
测地线 sand 长度太子邹近曲线 sbUY
原因:流珍测地线楼取板顺直 ⇔ 线上不存在关轭弧 (s.n) (conjugate points).
欧丘塱可怜否在失轭鱼对,因此俩些沙目直岗(段)幕短.
y ij论 Jab > 洛仑菰度稅ノ:(IR ⁿ · Jab)
$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\rho\rho} dx^{\rho} dx^{\rho} + \eta_{11} dx^{1} dx^{1} = -(dx^{\rho})^{2} + (dx^{1})^{2} = -dt^{2} + dx^{2} \qquad \chi^{\rho} = t (c = 1) \qquad \chi' = \chi'$
$V_{\mu\nu}T^{\mu}T^{\nu}=-\left(T^{\nu}\right)^{2}+\left(T^{\prime}\right)^{2}=0$ for $T^{\nu}=T^{\prime}$ mull.
<0 for TooT1 timelike.
>0 for T° <t' spacelike.<="" td=""></t'>
河的时空中任-类时曲线C看怀是最短线 ⇒ 娄时测地线Y是P.1间的最级
/ P t-x 通过冷弦坐板的平移和伪转动
tivelike t-x - t-x - 2
P 类时测地线/重信。

 $dl_{pa} = \sqrt{|ds|^2} = \sqrt{-[-dt^2+dx^2]} = dt$ 闵的时星的类时现了地线是最长类时线 $dlp_b = \sqrt{-(-dt^2+dt^2)} > dt = dlpa$ * 好线最长 (=) 沙地线 maximum => extreme => geodesics counterexample: conjugate points 对任意时至中有类时联系的两点:①两马问最改约一定为类时测电线 0两些目的类时测地线和最长. ③两些问无最短类时线 ④ 类时测地线长为极大 ㈜ 线上不存在关轨它对 . §3.4 黎曼曲率张量 Riemann Curvature Tensor 3.4.1 黎曼曲率的定义加性族。 导数算符的无挠性 (VaVb-VbVa)f=0 瓜的对易子 对函数的作用结果物零 ⇒ 瓜贴f 对孤心心型 对某陷型继勤结果 ⇒ 非对易性 Claim 3-4-1 $(\nabla a \nabla_b - \nabla_b \nabla a)(f w_c) = f(\nabla a \nabla_b - \nabla_b \nabla a) w_c$ (M, Va) Claim 3-4-2 设Wc, We' & 子(O11) 且 Welp=We'lp welp=welp $\mathbb{R} \left[\left[\left(\nabla_{a} \nabla_{b} - \nabla_{b} \nabla_{a} \right) w_{c}' \right] \right|_{P} = \left[\left(\left. \nabla_{a} \nabla_{b} - \left. \nabla_{b} \nabla_{a} \right) w_{c} \right] \right|_{P}$ (ṽa-√a): (o11)型→10/2)型 一映射为(1/2)型纸量 C°ab. (VaVb-VbVa):(0,1)型→(0,5)型 —映射为(1,3)型纸量 Rabed. 在PE Wclp 1→ [(VaVb-VbVa)Wc]p.

Def 1 导数算符 Va的黎曼曲率张量场 Rabed 定义为	(M, gab) Vc → Rabed
(VaVb-VbVa) wc = Rabed wd Ywce fron)	
131): (IR^1, Sab) JaSbc=0	普遍导数障符可交换顺序
$R_{abc}^{d}w_{d} = (\lambda_{a}\lambda_{b} - \lambda_{b}\lambda_{a})w_{c} = (dx^{m})_{a}(dx^{v})_{b}(dx^{v})_{c}$) c (dmdv ma- gndmma) = 0
Claim 3-4-3 欧氏空间 (IRM, Sab)和词氏空间(IRM, Nab)白	的黎曼曲率张量吻为零 Rakd=0
黎曼強量物为蹇的良规剂为平直度规(flat metric)	加欧氏度规 Sab,闭氏度规 Sab
带有平直底规的空间称为平直空间(flat space) 如欧的	·空间. 河形空间[伪映空间(pseudo-Eudidaun)]
Claim 3-4-4 (VaVb-VaVb) vc=-RobdcVd Vvef	(-1,+1,+1,±1).
(VaVb-VbVa)wc= Rabed Wd YWd&J	(0,1)
Claim 3-4-5 YT ^{C1cr} d1e f(k,b)有	
(VaVb-VbVa) Tc1ck = - \frac{k}{1-1} Rabe C1 Tc1ck + \frac{k}{1-1} = - \frac{k}{1-1} Rabe C1 Tc1ck + \frac{k}{1-1} = - \frac{k}{1-1} = - \frac{k}{1-1} Rabe C1 Tc1ck + \frac{k}{1-1} = - \frac{k}{1-1} = - \frac{k}{1-1} Rabe C1 Tc1ck + \frac{k}{1-1} = -	Rabdj T di-edi
13/ta: (VaVb-VbVa) T°d = Rabd ^e T°e - Rabe ^c T ^e d	
· 黎曼闽辛比量以及相关兆量的性质	
Clain 3-4-6	
1) Rabed = - Rbacd	
以 R[abc]d = 0 [循环(cyclic)恒等計]	
的 ∇[aRbc]de=0 [毕身基(Bianchi)恒等式]	
芳烷 (M, gob, Vc)且Vagbc=O 定义Rabed=ged Rab	ce
4) Rabed = - Rabde	
5 Rabed = Redab	
F: y 由定义可知	
Plancid Md = Vladb Wc] - VlbVaWc] = 2VlaVbW	3 YWd & \$10.1)

```
Va (VbWc) = Da (VbWc) - Pdab VdWc - Pdac VbWd
                   = 2a (2bwc-Pebcwe)-Pdab VdWc-Pdac Ybwd
                   = Jadowc - Pebcdawe - WedaPebc - Pdah Vdwc - Pdacybwd
         Tra(TbWc]) = DradbWc] - Terbcdazwe - We DraFebc] - Ptab Mdic] - PdracTbzWd.
                  \partial_{a}\partial_{b}w_{c} = \partial_{b}\partial_{a}w_{c} P_{bc}^{e} = P_{cb}^{e} \Rightarrow \nabla_{[a}(\nabla_{b}w_{c]}) = 0
     3 Deil WeV[aRsc]de=0 \ \text{Weef1011}
         We ToRocde = Va (Rocde We) - Rocde Vawe = Va ( Vo Vc Wd - Vc Vo Wd) - Rocde Va We
         We VraRboid = VraVbVozwd - VraVcVbzWd - R [bold] & Vazwe.
                       = REabcle Yewa + REabidie VCI We = REBOLDIE VOI We.
      4) Vagcd=0 => 0=(VaVb-VbVa)gcd=Robceged+Rabdegce=Rabcd+Rabde.
      可腿 利肌
   (0以)型Tab ⇔ (1川)型Tab G全解的相似,有相同的迹 Taa= T(e**;e**)=T***,
       T<sup>a</sup>a= g<sup>ac</sup>Tao 为T<sup>a</sup>s的迹(穤裏枕),也为Tas的迹(需要度视).
   (0,4)型Rabed = (0,2)型的通. fall Realized, gar Rased, gad Rabed. gbd Rabed. gld Rabed.
              六维种外有一种主
  Rosed
trace part+ @ gac Rabod = Rbd 实 gbd Rabod = Rac 初为野绿 (Ricci Tensor) [Rabod 的迹]
         注:皮坚奇強量振借用度规) Rac = Rabc b 有明确定义
                                   但Rabed是不可以存在的,R也不可以存在
     L→ @ gac Rac = R. 務为标量曲率 (Scalar Curvature) [Rac的迹].
  troce-free® Def a 对约数 No.3的广义黎曼空间,外外流量(Weyl Tensor) Cabal定以为Rajed的无迹部分
   Cobca = Robed - 2 ( gase Ralb - gote Rala) + 2 (naj) na) R gase galb 有連幹を
   Claim 3-4-7 外级量的性质:
```

1) Cabal = - Chard = - Cabal = Cadab

C[abc]d=0

13 Cabed 的舒适都为零,例如gac Cabed=0

Def 3 「义容曼空间的爱因斯坦狄曼 Goo定义为 Goo = Rob - i Rgoo

Claim 3-4-8 Va Gab=0 (其中Va Gab= gac Vc Gab)

3.4.2 由度规)计算黎曼曲年

非蜥基底 {(eu)a}{(er)a}

蒂度规的流移 (M, gab) + 适配联络 Va gloc=○ + 坐柄基底 {(=\frac{3\lambda}{3\rm})^a} {(dx^\mu)_a} ⇒黎鲥辛 Rabed

例: 生株系{r,4} → 正交但利3-基底 (六, 六) [华标] → 正交13-基底 (ê, ê) [非正交]

坐桥基底的特殊4版一对易性 [計,計]=0但[e,e,]≠0

 $R_{abc}^{A} W_{A} = (\nabla_{a} \nabla_{b} - \nabla_{b} \nabla_{a}) W_{c} = 2 \nabla_{[a} \nabla_{b]} W_{c}$

VbWd=

因为 Va(Nowe)= dadowc-Pebedawe-wedaPebe-Pdab Vawe-Pdac(dowd-Pebawe)

V[a (Vb] wc) = 2[1026] wc - Perosaj we - we 2[aPebic - Pakin Vdwc

=> Rabed Wd = -2[Wd 2[a Pdbic - Pec[a Pdbie Wd]

Rabed = - (dapdbc - dopodac) + (pecapode - pecapodae)

Rungl = - Duplus + Duplus + Phonplus - Phonplus

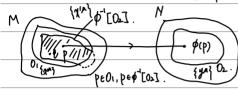
= - Plus, + Plus, v + Phon Plus - Phon Plus

取定度规 gan 即(建)线元 ds=gandxmdxm

Exist PPur = = = 1 gpv (gvx, 0+ gov, u - gar, u).

襲曲 $R_{NO}^{\rho} = \Gamma^{\rho}_{NO,N} - \Gamma^{\rho}_{NO,N} + \Gamma^{\lambda}_{\sigma\rho}\Gamma^{\rho}_{N\lambda} - \Gamma^{\lambda}_{\sigma\nu}\Gamma^{\rho}_{N\lambda}$ ($\Gamma^{\rho}_{NO,N} = \frac{\partial \Gamma^{\rho}_{NO}}{\partial x^{\nu}}$)

野強星Rao = Ravor= アルロローアレロル+アルロアンレーアクロアルス


§3.5 内禀曲率和外曲率 Intrinsic curvature & Extrinsic curvature
桶 🔙 🛍 镶嵌在3组球的空间中的2组面
外曲率:把流粉镶进高-维流畅价定义的曲率
黎曼曲辛→内禀曲辛: 欠映流形M在指定联络70后的"内禀弯曲性"
(M, goo)中凡是只由goo(而不必嵌入高·维流形)决定的性质 - (M, goo)的内禀性质
(内裏)弯曲性的等价性质 => 弯曲空间
リ导教算符的非对易性 (VaVb-VbVa)Wc=Rabed Wd YWd e f10,1)
以矢量平移的曲线信赖性 内禀曲率Rabed #零
稻空间→绝对科 (da具有对易性).
弯曲空间→平移依赖于曲线 存在闭合曲线,线上来一些的关量光线平移一周后不复原
写曲空间→平移存软于曲线 存在闭合曲线,线上来一些的关重光线平移一用后不复原 例:S² Vª 治门合曲线 abca(每段都是大圆纸 [测世线])平移一用后不复原 ル・サール・ルロールロ [平移保正対性] 与赤直切失 [な か 公正交
U ^a → W ^a [平移保正克性] 与赤道切失 T ^a 始终正交
可存在初始平行后来不平行的测地线
例:S2中的两条线;欧氏室间率行线补不相交,
· 内襄曲辛5外曲卒是不同的概念
3组跃代空间中的2组团柱面
L La. 输上两条扩直线认同(帐台)位 内禀曲率为零
L和L之间的部分 - Rabed仅与PS的邻域有关
与曲线训刊无关

第四章 李子数,Killing t为和超曲面 Chapter4 Lie derivotives, Killing field & Hypersurface.
94.1 流彩目的映射· Maps of Manifolds VP P VP(P).
光涌映射 φ: M→N fm10,0)= fm fn(0,0)= fn M (φ (p(p)) N
流移M和NL光滑(KIL)型然量场的集结 FM(KIL)和子M(KIL)
Def 1 拉回映射 p*: FN→ FM 定义为 VfeFN PEM PF Floren IR.
$(\phi^*f) \in \mathcal{F}_M \text{ s.t. } (\phi^*f) _{p} := f _{\phi(p)} \mathbb{R}^p \phi^*f = f \circ \phi (\text{pull back}).$
Def 2 打荆映射 中*: Vp→Vp(p)定义为 ∀Va∈Vp f∈FN (pull forward)
$(\phi_* \vee)^{\alpha} \in V_{\phi(p)}$ s.t. $(\phi_* \vee)$ $(f) := \vee (\phi^* f)$
Def 3 体: JNOIL) → JMIOIL) 東東 VTEJNOIL) PPEM VIVLE Vp.
(\$*T) ∈ FM(0,1) s.t. (\$*T)a,a p(4)a,(VL)a= Ta,a p(p)(\$xVI)a,(\$xVL)aL
Def 4 中x: Tup (ki0) → Tup(p) (ki0). 定义为 VTE Tup(ki0) VW1···WKE Vp(p)[时隔空]
$(\phi_{w}T) \in \mathcal{F}_{V_{KP}}(k, o) \text{s.t.} (\phi_{w}T)^{a_1 \cdots a_k} (w')_{a_1 \cdots (w^k)} a_k = T^{a_1 \cdots a_k} (\phi^{w} w')_{a_1 \cdots (\phi^{w} w^k)} a_k$
注:抠回映射 ф*能把 N上的(a山)型铁量切变为M上的同型铁量均(切→切). Fn→FM
推阐映射 4×只把M上-EP的(ka)型张量变为N上像EP(P)的同型张量(张量→张量) Jup→Juan
to \$\phi_*: \mathcal{F}_N(1.0) \rightarrow \testit{T} \in \mathcal{F}_M(1.0) \rightarrow \testit{T} \in \mathcal{F}_M(1.0) \rightarrow \testit{F}_N(1.0)
(中xT)a 1 Wa := ? 9在N中,原像些中"(5) 无法确定 → { 申非到上 ● 可能移在 T 中"(1) ************************************
φ: M→N 是物分同胚映射 φ, φ+皆由光滑的且到上的
⇒ 维勒映射 px 可把 M上 (ko)型张量场变为N上同型继量场
Φ*: Jm(kio) → Jn(kio). / (φ+)*: Jm(o, b) → Jn(o, b). [p*].
]⇒指「中:JM(kil)→JN(kil)
例如设Tabefm(III)则(PxT)ab EFN(III)定义 YeeN WaeVe* Vb∈ Ve
$(\phi_{\star}T)^{a}_{b} _{\mathcal{L}}W_{a}V^{b}:=T^{a}_{b} _{\phi^{-1}(\mathcal{L})}(\phi^{\star}w)_{a}(\phi^{\star}V)^{b}$

回⇒推 px:Fn(kil)→ Fm(kil)

- ゆ* ラゆ* 为线性映射且互逆 . (Claim 4-1-1) .
- · 微河队胚的主动观点与被动观点。

φ:M→N为徽市[胚[M与N维数相凡]局幹些标本peO1-{χν} φ(p)eO2-{yn} μ=1····h

在中Tialt的新生标?如了

定义为 ググ(P)= Y*[ø(P)].

PYO1N≠"[02]自动诱钩坐标变换「私")→「私"

Clain 4-1-2 该Clt)为M中的曲线,Tan的线在Cltn)的好失 曲线的好好的像

则 AxTa € Vp[cuty]是曲线中[cth]在中[ctty]外的切失

=曲线的像的切欠.

生椒変換 ベー ベル ¥1,6 D1ハゆ [0.].

有切失 然[(300)][]=(30)][]()

9 x [(dx")a | 2] = (dy")a | p(2).

对微炉胚 φ: M→N

②被动观点 (passive viewpoint) 中为生物变换 {xm}→{xm} 站量不变。

Claim 3 主动、被动观览的等价性.

 $\left(\phi_{k}\mathsf{T}\right)^{A_{1}\cdots \mu_{k}}_{\nu_{1}\cdots\nu_{\nu}}\Big|\phi(p)=\mathsf{T}'^{\mu_{1}\cdots\mu_{k}}_{\nu_{1}\cdots\nu_{\nu}}\Big|p$

新与p(P)的新x量内T在右坐标系{ymq的分量=龙与P的龙跳量T在新生标系{xmq的分量.

active viewpoint(卓变换,纸幢变换)

passive viewpoint (對複級).

例1. x'1 生标线 (x'細'为常数)的像就是y'生标线

 $\chi^{\prime\prime\prime}$ 生标线的切矢 $(\frac{2}{32m})^{\alpha}|_{p}$ 的像 $f_{\lambda}[(\frac{2}{32m})^{\alpha}|_{p}]$ 就是 $\chi^{\prime\prime\prime}$ 生标线的像 $\chi^{\prime\prime}$ 生标线的协攻 $(\frac{2}{3p})^{\alpha}|_{\rho,p}$

(dy) / (q1p)

84.7 李數 Lie Derivatives

M上的光濯矢量的 V^{α} —> 单多你后下胚群 $\phi=\{n_{\alpha}\mid \text{tell}, n_{\alpha}:M\to M\}$

M上的光滑张量场 T°L qtx: fm(kil)→fm(kil)

 $\mathbb{P}\setminus \phi_*^* T^a_b$ 也是M上的同型光滑轴量场 $\lim_{t\to\infty} \{(\phi_*^* T^a_b - T^a_b)|_p$ 为张量场 T^a_b 在PS的某一导致

(Lie Derivative of Tab with respect to Va)

Claim 4-2-1 1, f= V(f). ∀f € f

Pf: 由战 CHI 是 中 过 P 鱼 的 轨道 , $V^a|_{P} = (\stackrel{?}{\leftarrow})^a|_{P}$ 是 CHI 全 的 切失 .

$$\int_{V} f |p| = \lim_{t \to 0} \frac{1}{t} (\phi_{t}^{*} f - f) |p|$$

\$\\phi_t^*f|_P=f|_{\phi(P)}. t=

= lim = [flore)-flp].

 $=\lim_{t\to 0}\frac{1}{t}\left(\left. f\left[C(t)\right] - f\left[C(t)\right] \right) = \frac{d}{dt}\left. f\left[C(t)\right] \right|_{t=0} = V(f) \right|_{P}$

·适配生物剂等导数

:维蜥条 {x',xt} s.t. x' 蜥球 整作 维庆量物 V*的积分邮线 (t=xt). V=(元) (元) (元)

x*生桥线选作为与x*生桥线横截(交互)两切矢不畅)的-组曲线

⇒ 矢囊场 Vª 的适配生桥条 (adapted coordinate system to vª)

一矢量场以是其适配生标条的第一生标基矢场 Va=(元)a

Claim 4-2-2 张童的 Tai...ai 沿Va的李子数在Va的透面已坐桥教》重等于 Tai...ai 在适面已坐标系的

$$\left(2\nu\right)^{\lambda_1\cdots\lambda_k}_{\nu_1\cdots\nu_k}=\frac{2\sum_{\nu_1\cdots\nu_k}^{\nu_1\cdots\nu_k}}{2\chi_1}$$

谴对对

= lim = [(p*T)~/p-T~/p]

Pt 1/9= (P) old

由Claim 4-1-3 (Ptx T) " | p = T" | 1 = (3x" 3x" 7/0) | 1

考虑≦1附近的一个\邻域内的坐桥变换 bīeN P≡숒(克).

诉导新生标 $x'^{1}(\overline{q}) = \chi'(\overline{p})$ $x'^{2}(\overline{q}) = \chi'(\overline{q}) - \chi''(\overline{q}) = \chi'(\overline{q}) - t$ 适配生标系设 $\chi'(\overline{q}) = \chi'(\overline{p}) + t$ $\chi''(\overline{q}) = \chi^{2}(\overline{q})$. $\chi'^{2}(\overline{q}) = \chi^{2}(\overline{q})$. =) 39m = 5m 39m = 50, BP T/2/2=TA/2 =) (1, T) " | p = lim + [T" | 1-T" | p] = 2 T" | p **尼某-战量的分**量 Q.E.D. → 乙 滿类稀化浓律 Claim 4-2-3 1, ua = [v,u]a = Vbobua - ubobva ∀ua, va ∈ f(1.0). Pf:证明恢重等式 ← 证明两些在某-坐标系(适配坐标系)分量等式 $[v,u]^n = (dx^n)_a [v,u]^a = (dx^n)_a (v^b \partial_b u^a - u^b \partial_b v^a)$ V^a为适函C生标系的第一生标基矢 $= V^b \partial_b U^M = V(W^M) = \frac{\lambda U^M}{2\alpha^4} = (\frac{1}{2} V U)^M$ 普遍导数算符 み みレペニの = 1, ua = [v,u]a Claim 4-2-4. $L_V W^a = V^b \nabla_b W^a + \overline{W_b \nabla_A V^b}$ YVaEF(110) Watf(011) () aim 4-2-5 Ly Ta, --ak = VC VC Ta, --ak - \frac{k}{b_1 --b_1} - \frac{k}{j=1} Ta, --c, -ak \text{VC Vai + \frac{k}{j=1} Ta, --ak \text{Vc Vai + サTai---akef(kil) VCef(1.0) Vab任-学数解. §4.3 Killing 矢量吻 Killing Vector Field. 徽河胜巾:M→M + 比较度枧 がgu 与gab ⇒ 等展规映射. Def 1: 微写|| 阳中: M→M称为等en现映射(isometry).若中*gob=gob [條规性——每些量 gas|p与 p* gas|p相等]

 $\phi: M \to M$ 为等度规则射 $\iff \phi^{-1}: M \to M$ 为等度规则射

A: Play white 1 mor 3x1 - o light 3x2
光頂灰量物 Va → 单约微分同胚群(A telk, A:M→M is a diffeomorphism?. (va Fm(1,0)
康舰gab 1,5° → 阜参赛舰群 (唯 telR, 如→M is a isometry)
Det2:(M,gab)上的乐量吻写a初为Killing矢量吻,苍它纶出的单奓徵为(凤胚(局部)群是单奓等底耙(局部)群
\Leftrightarrow $1_3g_{ab} = \lim_{t \to \infty} \frac{1}{t} (p_t^*g_{ab} - g_{ab}) = 0$
Claim 4-3-1 5a为Killing 矢量场⇔ 5a满走Killing 方程 Pa为+7b3a=0 私
或 ∇(ažb)= O 或 ∇ažb= ∇cažbz 其中 ∇a满t Vagu=0
9f: 0= 25gm= 3c Pcgm+ gm Vazc+ gac Vbzc= 0+ Vazb+ Vbza= V(azb) = 0
Claim 4-3-2 若存在坚韧系17~1使gas的全部分量满足 39mm =0
则(3)。是坐标域上的Killing失量动
Pf:{x^}>为這配生标奏 由Claim4-2-2 Yim [丈(砂xi)g],,, = コョルーロ 故(ゴxi)a分Killing矢量切
Jain 4-3-> 茨亥°为Killing矢量场,T^为测t电线切矢,则T^Va(Tb3b)=0 BPTb3s,在测地线L是常数
$Pf: T^{0}\nabla_{a}(T^{b}3b) = 3bT^{a}\nabla_{a}T^{b} + T^{b}T^{0}\nabla_{a}3b] = 0$ $(34) T^{0}\nabla_{a}(T^{b}3b) = 3bT^{a}\nabla_{a}T^{b} + T^{b}T^{0}\nabla_{a}3b] = 0$
: ** TE ** Va 56 = V[a 76]
39.10是killing失動为 残性現な x 3a+ β 10a to 是 killing 矢量の 集会 対勢 できいりる to と killing 矢量の に作し
对多 [3.1/] 也是 killing 乐量的 是矢量空间,这作儿
Clain 4-3-4 (M, g,ьь)上最有 n(nm) / 推页的killing 矢量均 (n=dimM)
即 M上阶有Killing/電物的集を(作物矢量空间と)的维数< 1/2
Note:⊙等度规映射是一种【保存规】的对称操作·⇒一个Killing经勤的代表(M.gas)的个对初性。
具有 nlming (大量的的下) 黎曼宝可 (M.g.a) 私为最高对称性宝问
② 寻找(M, gu)的维州ing 经物(比的维数)一般活起某洲ing 后程的通解。

例1: 找出下列「义聚曼空间的全体独立killing矢量物 →空间(液药M+度规gu)的某-对称性.
1) 2维欧(空间 (R², боь) 笛标坐标条(x.y)下线元表达成 ds²= dx²+dy² gn=g22=1 g12=g21=0
$\frac{\partial \beta_{ab}}{\partial x} = 0$ $\Rightarrow (\frac{\partial}{\partial x})^{\alpha} \pi (\frac{\partial}{\partial y})^{\alpha} \times \text{Killing K量的} \rightarrow \text{产格对新性}$
极生标录 (r,v) 下字注意达成 ds2=dr2+r2dq2
$\frac{29m}{39}$ = 0 ⇒ $(\frac{3}{39})^{a}$ b Killing 発 b → 旋转对 移性.
n=2 n(n4) = 3个 killing 失量切 即欧氏堡间是最高对称性空间
(部) 4=-4(部) 4+外(部) 医稀约与生物有关,活独立。
r) 3 维欧氏宜问((R³, Sab) 平移对面性 旅转对面性
Killing $\Re \left(\frac{\partial}{\partial x}\right)^{\alpha}, \left(\frac{\partial}{\partial z}\right)^{\alpha}, \left(\frac{\partial}{\partial z}\right)^{\alpha}, -y \left(\frac{\partial}{\partial x}\right)^{\alpha} + \chi \left(\frac{\partial}{\partial y}\right)^{\alpha}, -z \left(\frac{\partial}{\partial y}\right)^{\alpha} + y \left(\frac{\partial}{\partial z}\right)^{\alpha}, -x \left(\frac{\partial}{\partial z}\right)^{\alpha} + z \left(\frac{\partial}{\partial x}\right)^{\alpha}$
n=3 =6个Killing 全物 即区跃空间是最高对移性空间
i3) 2维河代空间(IR*, Nob) 淞龙城坐标条(t,对下线元表达成 ds*=-dt*+dx* g11=-1 g12=1 g12=g4=0
$\frac{32m}{3t} = 0$ $\frac{32m}{3x} = 0$ $\Rightarrow (\Rightarrow)^{2} \times (\Rightarrow$
定义新生粉系 {Y,11
第元表述式 $ds^2 = dy^2 - y^2 dy^2$ $g_{11} = 1$ $g_{22} = -y^2$ $g_{12} = g_{21} = 0$ (外間を対 $p \in A$ x $y \in A$
$\frac{39m}{31} = 0 \qquad \Rightarrow \left(\frac{3}{31}\right)^{a} $ $\Rightarrow \text{ (boast)}$ $\Rightarrow \text{ (boast)}$ $\Rightarrow \text{ (boast)}$ $\Rightarrow \text{ (boast)}$
(多水) ^a =t(分) ^a +x(分) ^a R*上的伪转动Killing矢蛇动 S boost Killing vector field 主动观点.
在全限有限
(元)°在A、B区类时、在C·D区类皇,在两条45°直线上类皇。
n=2 =3个Killing 经量均 即闵氏坚间是最高对称性空间
(4) 午镇闭氏空间(\mathbb{R}^4 , \mathbb{I}_{ab}) 最高对称性词 $n=4$ $\frac{n(n+1)}{2}=(0\uparrow 独立的 Killing 矢量均$
194个形 (武)°,(蒙)°,(蒙)°,(宽)° 流t,x,y,运轴平移对称性.
b 3个函数功 -y(元)°+x(六)° -z(六)°+y(元)° -x(元)°+z(元)°
5克 2 ツェチル (E 河 元 5本ガラ仏)性

(4.3)(物) + (())(+ x()) + (())(+ x())(+ x())(

Claim 4-3-5 该(x,t)是2维测限空间(IR*, Nab)的治仓孤坐标系, 点: |R*+ |R*是伪转动 Killing to

· 5°= t(六)°+α(六)° 对应的单参等被视群的一个群心(以参数)刻画的等度规映射),则由外诱导的

坐标要换(t.x)→ 1七/x1 是论兹要换。

矢量均 $5^{\alpha} = \left(\frac{\Delta r}{\Delta r}\right)^{\alpha}$ 积分曲线的切矢 $T^{\alpha} = \frac{dx^{\alpha}}{dx^{\alpha}} = \left(\frac{dr}{\Delta r}\right) \left(\frac{\Delta r}{\Delta r}\right)^{\alpha} + \left(\frac{dr}{\Delta r}\right) \left(\frac{\Delta r}{\Delta r}\right)^{\alpha} = \left(\frac{dt}{\Delta r}, \frac{dr}{\Delta r}\right)$

田子(六)a= x(六)a++(六)a 故Th= (x.t).

 $\sinh x = \sinh x = \frac{e^x - e^{-x}}{2}$ CUN的 =) { 3t = x 沒C(1)为满足P=C(0)的积分曲线 元禄旦 収(該线参数式め X(气)=Xpch气+tpsh气 t(气)=Xpsh气+tpch气 thX=<u>shx</u> chx-shx=1

 $\chi'_p = \chi_q = \chi(\lambda) = \chi_{pch\lambda} + t_p + t_p$

tp' = te = t() = %p sh\+ tpch\ $t'=x sh\lambda + t ch\lambda = ch\lambda (t+xth\lambda)$

 $\sqrt{2}$ v=th\ $\sqrt{=(1-v^2)^{-1/2}} = Ch\lambda$ \Rightarrow $\chi'=\gamma(\chi+v+b)$ $t'=\gamma(t+v\chi)$ 浴它益变换(C=1).

 $ds^2 = -dt^2 + dx^2 = -dt'^2 + dx'^2$ 者包蒸条 $\{t', x'\}$ _ Loot 中心的學樣地映射 老包蒸条 $\{t', x'\}$.

Claim 4-3-6 沒(xx)是(IRM, Nab)的治疗微型标系,则(xxx)也是治疗益型标系

⇔ {α'川是由{α'' | 通过等度规映射 p: R"→ R"诱导而得。

Note: 等度规则斩保持坐标系的洛龙版性/笛卡孙性.

§4.4 越曲面 Hypersurface

Def1 设M.S.S.流形, dimS≤dimM=n,映射中:S→M瓶的嵌入(imbedoling)

老佛一的和C°的,且UpeS推翻射像:Vp→Vayn非跳

RP P+ Va=0 → Va=0

⇒嵌入使S的拓扑结构和流畅结构自然地被带到中ESI去,中ESI成为流畅且中: S→中EsI成为微分同胚映射

Def 2 嵌入的像中[S] 務別M的一代數入子流移 (inbedded submanifold)

若dimS=n-1 则\$[s] ⊂M 秘为M的-3战超面 (hypersurface)

例1: S= (P(=M) 中的单位环面 S², 刚恒等映射 p: S²→ 1R³给出 R³的一个嵌入子流形

 $dinS^2 = 2 = 3 - 1$ 故 $S^2 \to R^3$ 的一个起曲面

normal vector

·超幽的法以与法软。

起曲面的法外化(n'a=xna 相差标量因子)

【新屋园) 嵌孔流的流汛唯一.

S P M M

ÞES]为M的超瞄面,geφEs]cM → q有-tn维切空间 dmVq=n

 w^a e V_{ℓ} ይ过 ℓ 트且躺在 Φ [S]上的某场曲线切失,则说 w^a 切 \to ρ [S].

Y V中全体切了中ESI的元素的成一个Ve的3集We dimUb=n-1 9を法をMではおり9を所在切り中155的分量をか下方的分量

2.E法朱Me应定均与2.E所有切于中L5工的关量都正交的失量

能健康规)→ 球性定义荡矢n°若足gωn°w=0/沒有度规→定义志余矢(法对偶矢量)

Def 3 设φ[5]为起曲间,geφ[5]、饕对偶烷量Na e Vex 格为φ[5]在qis的法条(normal covector)

若nawa=0 YwaeWe

数码

Claim 4-4-1 起曲面中[S]上任-点《从有法条矢/Na,法矢量不住-但?后的任意的法条矢之间,只能差一

Pf: 沒饣(e)²···(e叭²)为Wq的任-墓底 + 与其线性独立的示綦 (e)² ⇒ 钅(e叭²)μ=1··n}为½基底

对偶基底 {(en)a| ル=1···n } 全 Na=(el)a 例 Na(et)= 5't=0 (t=2···n)

荻∀u^eWq有Nawa=o ⇒ Na=(el)a为Wq的港家(ma5na最终差1四3 ma=m;na)
例2: R3中的起曲面对有f=ax+by+c3=0, f2=x3y3+23-a3=0
但f3=xi+yi+zi=o不是 [q有生标原=满处f=o] df3 f=o=0
改 df f=cmt≠0 则f=const结es3M+的-↑起曲ඛ.
Vaf (coveebor) 正交子由f=const 所定义的起曲面。
Claim 4-4-2 以约53代表由f=const定义的超曲面,沒只e中[5], Vaf e+0
则 Vafle是中[S]在95的法宗矢.
Pf: WARTITE OF SIL的某曲线 CUt) 中[5]上f治CUt)对常数.
WaVaf=w(f)=0 且Vaf*。即Vaf*中[5]在95的法款.
⇒若M上有辣蚬g咖 满足g咖nawb=0 (即na=gabnb 与p[s]上所有矢簟正交) ∀wbe Wq
n ^a ομ超曲面中[5]在9点的法灰(normal vector) Wq一切于中[5]的矢量
⊙ gob为正定疾规) na不属于Wq, na eVq-Wq,
⊙ god>为焓磁jē规) n ^a y能lst We
Claim 4-4-3 na EWe, 的充塞条件为 na na = D
Pf:(⇒) naeWe则na可以看作 nawa=o中的wa 故 nana=O
(F) 对任法铢na存在墓蔽 {(Su) ^a }使(e) ^a (en) ^a eWq且 na=(e ⁱ)a
n^a 在这一基底的第一分量 $n^i = n^a(e^i)_a = n^a n_a = 0$ $n^a = \sum_{t=1}^{a} n^t (e_t)^a \in W_g$
例3· 该S=R, M=R², M上庚舰Ja=Nab, 中:R→R²为嵌入, 则中[R]为2维闰的时空的起曲面
及 (t,水)为治疗在生精系
Cherry of the
$ \langle (e_i)^a = (\frac{\lambda}{4\pi})^a \rangle We 基 $ $ \langle (e_i)^a = \alpha (\frac{\lambda}{4\pi})^a + \beta (\frac{\lambda}{4\pi})^a (\alpha \neq 0) $ $ \langle (e_i)^a \rangle $
$(\ell_1)^a = \alpha \left(\frac{\partial}{\partial t}\right)^a + \beta \left(\frac{\partial}{\partial x}\right)^a (\alpha \neq 0)$

11 110 x1 (0/4 (-1) - (-1) (1)	灰取法叙 (e¹)a=α¹(dt)a=Na.
法头 Na = Jab Nb = xt gab (dt)b = -xt(急)a	类e起画面 ↑na
可知 na k Wg, (n'=na(Q')a+0) 且	类空起曲面
② PCIRI5t轴科 befPCIRI Will-	维的 .
令(e)*=(計*カWq基版 7V	其底
$\langle (e_1)^a = (\stackrel{?}{\leftrightarrow})^a \rangle Wq 基 $ $\langle (e_1)^a = \times (\stackrel{?}{\leftrightarrow})^a + \beta (\stackrel{?}{\leftrightarrow})^a $ $(\beta^{\ddagger o})$	N. 21 m.
朝護矢 (e')a(e2)a=0 (e')a(e1)a=1 故	
法庆 $N^a = \int_0^{ab} N_b = \beta^{-1} g^{ab} (dx)_b = + \beta^{-1} (\frac{\partial}{\partial x})^a$	类对起题面 ((e ₁) ^a
可知 nad Wg (n'=na(e')a+0) 且1	lana=+ >0 (na为辖) 2 na
② ÞERI为X轴,t轴成4°角 ÞeéÞEIRI	
令(e) ^a =(武) ^a +(蒙) ^a 为Wg基版 } Vg (e) ^a = 以(武) ^a + β(武) ^a (α+β) } Vg	基底 类光起曲面 (e,) (E,) (E) (E)
$(\ell_1)^a = \alpha \left(\frac{3}{34}\right)^a + \beta \left(\frac{3}{34}\right)^a (\alpha + \beta)$	na /
f对偏差矢 (e')a(ez)a=0 (e')a(e)a=1 放	中法族 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$
法庆 Na = Jab Nb = 1 c-p gab [(dt)a-(dx)a] = -	R法族 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\partial}{\partial t})^a + (\frac{\partial}{\partial x})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$
	R法族 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\partial}{\partial t})^a + (\frac{\partial}{\partial x})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$
法庆 Na = Jab Nb = 1 c-p gab [(dt)a-(dx)a] = -	取满灰 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\lambda}{\lambda t})^a + (\frac{\lambda}{\lambda t})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$ $a^a Na = 0 (n^a)$
法矢 N ^a = g^{ab} N _b = ¹ / _{α-p} g ^{ab} [(dt) _α -(dv) _α] = - 写知 n ^α ∈ We, (n' = n ^{α(e')} α=0) 且 n 类や乾曲面 法矢晄与切矢重直,本身又是切矢之-	取满族 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\dot{\sigma}}{\dot{\sigma}})^a + (\frac{\dot{\sigma}}{\dot{\omega}})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$ $a_{1a} = 0 (n^a)$ $+ \beta = 0 (n^a) $ $+ \beta = 0 (n$
法矢 N ^a = g^{ab} N _b = ¹ / _{α-p} g ^{ab} [(dt) _α -(dv) _α] = - 写知 n ^α ∈ We, (n' = n ^{α(e')} α=0) 且 n 类や乾曲面 法矢晄与切矢重直,本身又是切矢之-	取满灰 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\lambda}{\lambda t})^a + (\frac{\lambda}{\lambda t})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$ $a^a Na = 0 (n^a)$
法矢 N ^a = g^{ab} N _b = ¹ / _{α-p} g ^{ab} [(dt) _α -(dv) _α] = - 写知 n ^α ∈ We, (n' = n ^{α(e')} α=0) 且 n 类や乾曲面 法矢晄与切矢重直,本身又是切矢之-	取满床 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\dot{\alpha}}{c})^a + (\frac{\dot{\alpha}}{c})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$ $a_1 n_a = 0 (n^a \rangle + n_a)$ $- \Rightarrow \text{ Più Claim } 4-4-3.$ 法族外共 $(n^a n_a < 0)$ 法族外共 $(n^a n_a > 0)$ $n^a n_a = n_a$
法失 $N^{\alpha} = \int_{a}^{ab} N_{b} = \frac{1}{\alpha - p} g^{ab} \left[(dt)_{a} - (dv)_{a} \right] = -\frac{1}{2} \int_{a}^{ab} N^{\alpha} \in W_{0} \left(N' = N^{\alpha}(Q^{i})_{\alpha} = 0 \right) \underline{B} N^{\alpha}$	取满床 $(e^i)_a = \frac{1}{\alpha - \beta} [(dt)_a - (dx)_a] = Na$ $\frac{1}{\alpha - \beta} [(\frac{\partial}{\partial t})^a + (\frac{\partial}{\partial x})^a] = -\frac{1}{\alpha - \beta} (e_i)^a$ $a_{10} = 0 (n^a) \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} $ $- \Rightarrow \text{Più Claim } 4 - 4 - 3.$ 法於外共时 $(n^a n_a < 0)$
法矢 Na = gab Nb = - gab [(dt)a-(dv)a] = - 「Shu Na ∈ Wg (N' = Na(e')a = 0) 且 N	取満転 (e¹)a = 1

(M, g_{ab})
⊙ ФESI为类时象类空起幽面:诱导疾舰 has 5/13-化范实 na S P Φ (12 d c c)
$hab = ab + hahb (n^a n_a = \pm 1)$.
hab wa wzb = (gab F nanb) wa wzb = gab wa wzb (nawa = nb wzb =0) (wa, hab) (w, gab)
诱导度规 has 即为将 gas 除削于Wq. (作用对象范围缩小)
@ Ф[5] 粉类起曲陶:∃n ^a ∈Wq, s.t. hab n ^{awb} =Jab n ^a wb=0 (n ^a wb=0)
非遇化性戛字 gad Vawb=0 YwbeWe => Va=0 但na+0
Claim 4-4-4 类光起曲面上沒有诱导虚视(医视的非遇处性被破坏)
· 对于非类光起曲面 pESI hab = gahcb = Sab + nanb
$\forall V^{\alpha} \in V_{\alpha}$ $h^{\alpha}_{b} V^{b} = V^{\alpha} + n^{\alpha} (n_{b} V^{b}) \Rightarrow V^{\alpha} = h^{\alpha}_{b} V^{b} \pm n^{\alpha} (n_{b} V^{b})$
Va 分解 - ±na(nbvb) 平打于法矢na 为法向分量 => hab 为从 Ve到 We 的投影映射
hab Vb 垂直于法实 Na 为 切问分量 (projection map).

第五章 微分形式及英根分 Chapter5 Differential Forms and Integral

多5.1 邻氏分形式 Differential forms

Def 1 Warnar € Fylor1)叫V上的七次形式 (七形式) (1-form),若Warnar=Wcarnar] (比作W)

Claim5-1-1 (a) War-ar=WIAr-arz > 对任意基底有 War-ar=WIDAr-2013.

(b) 3基底(東WM1-M=WEM-M) = Wa1-ac=WEa1-ac].

Claim 5-1-2 设U为1形式则

(a) Warmar = ST Warm --- The

初: Wabc = -Wbac = Wbca ---

b) 对任意基底 Warner St Warner - March

凡有重复具体指标者必變。

V上维化的的集合记作入心CJv(0.16)

⇒ ∧(も)为了v(0,も)的线性。空间

①1形式-V上的对偶5量 Λ(1)= V*

Tv (0,1)

⊙ 05成-任息数 ∧(v)=R

两个微分形式 操作(手献),要求积也为微分形式 ⇒ 求出八(1)的组数.

Defa. 该U和从分别为七两忒和M形式,则某楔形积(wedge product,楔积)是接下试定义的土地形式:

 $(\omega_{\wedge} \mu)$

映射 Λ : $\Lambda(U) \times \Lambda(m) \rightarrow \Lambda(U+m)$

楔积满处给律 (W∧从)∧½ = W∧(从∧∠)

分配律 いハ(ルナム)= ルハルナルハン

※ 亥検律 Wハル=(-1)thm Uハ3

时两1时成 WMM=-MMW=WaMb-WbMa

Claim 5-1-3 设dimV=n 刚dim $\Lambda(t)=\frac{n!}{L!(n-t)!}$ 若Lsn.

N(1) = 503 老七九.

设 { (41°, 143)°, (43)°, (43)° }是 V 的基底 { (e')a, (e²)a, (e³)a}是其对偶基底 Pf: n=3, l=2/2/89) $W_{0b} = W_{11}(e^1)a(e^2)a + W_{12}(e^1)a(e^2)a + \cdots$ $W_{24} = -W_{12} \quad W_{32} = -W_{23} \quad W_{13} = -W_{31} \quad W_{11} = W_{22} = W_{33} = 0$ $= W_{b} \left[\left(\mathcal{C}^{\flat} \right)_{b} \left(\mathcal{C}^{\flat} \right)_{b} - \left(\mathcal{C}^{\flat} \right)_{b} \left(\mathcal{C}^{\flat} \right)_{a} \right] + W_{2\flat} \left[\left(\mathcal{C}^{\flat} \right)_{a} \left(\mathcal{C}^{\flat} \right)_{b} - \left(\mathcal{C}^{\flat} \right)_{b} \right] + W_{3\downarrow} \left[\left(\mathcal{C}^{\flat} \right)_{a} \left(\mathcal{C}^{\flat} \right)_{b} - \left(\mathcal{C}^{\flat} \right)_{a} \left(\mathcal{C}^{\flat} \right)_{b} \right].$ = $W_{12} \left(e^{i} \right)_{a} \wedge \left(e^{2} \right)_{b} + W_{23} \left(e^{2} \right)_{a} \wedge \left(e^{3} \right)_{b} + W_{31} \left(e^{3} \right)_{a} \wedge \left(e^{i} \right)_{b}$ ¥wobe N(2) Wob = E Wow (er) A N(er) b と表示对3个数(1123)中取2个的各种组定(12)(23)(31)未和 Wab可用(e*)a/(e*)b /J,U=1,2 (MU)eC 线性表示且的]微此线性独立. $\Lambda(2)$ 的-组基 $\dim \Lambda(2) = \frac{3!}{2!(3-2)!} = 3.$ 1.n为住覆数(1≤n) 任-七形式門展开为 War-a= = = Wyn-yu, (em)a, 1 --- (em)a. 其中 \(e)a---(e")a\为 V*的任-基底. dimV=n 飞标对N(数(1,2···N)中取17数的翻组标和. t/n ∀≥∈(\(t) ≥舒/量か0 ⇒ (\(t)={o}) 何慶元 流形从上往一旦中指定1/12的一个1.形成 => M上的一个1.形成的,M上全体1.形成物的集合为/M(1). —— 1畸状物是-1对假峰物,0两试物是-1标量场 M上光滑的七形式面积为七头微分形式场(differential 1-form) 设(O,4)为-生标款,则O上的U形成物用对偶性标基底的{(e*)a}→{(d**)a}逐5线性表示 Wa,...a,= 毛Wa,...,u, (dxxx)a, 人···人(dxxx)a, 其中Wa,...,n=Wa,...a, (3xx)a,...(3xx)a,...(3xxx)a, 特例 1=n Wa,...an=W,...n(dx')a, 1-...1(dx')an 筒 W=W...n dr11/--- Ndxn —即M中任-早的N移ベ巡的辖人(n)是-维矢量宝间,基务为dr/^···/dd^/p,

Winn为ML生标域的函数(标量场)

・外徴がいいかり

Def 3 添码M上的外微分算符 (exterior differential operator)是一个映射 d://m(l)→//m(l+1)

度义为 (dw)ban-ae = (L+1) PCbWan-ac3 其中Pb为任于教算符 デEbW...3 = PCbW...3

定外做歹(驾数) 无需要并无形有附加结构,如庭枕. 联络 PCbWaj = PCbWaj + CCbajWc

例:1=0 W→f (df)) = Rof (df)a是fe/M(o)的外微分.

Claim 5-1-9 该Way-ar= EWAy-ar (dxx)ar1 -·· 1 (dxx)ar

 $\mathbb{R}^{1}(dw)_{ba_{1}\cdots a_{k}} = \sum_{c} (dw_{\mu_{1}\cdots \mu_{c}})_{b} \wedge (ax^{\mu_{1}})_{a_{1}} \wedge \cdots \wedge (dx^{\mu_{k}})_{a_{l}}$

Claim 5-1-5 dod=0

Pf: 兄→ゐ 對於數算符

同种3括移植意境删

 $[d(dw)]_{cba,...a_{c}} = (l+2)(l+1)\partial_{[c}\partial_{cb}W_{a_{1}...a_{c}]} = (l+2)(l+1)\partial_{[c}\partial_{b_{3}}W_{a_{1}...a_{c}]} = 0$

Def 4 W为M上的七形式场 5 W是闭的 (closed) 若dw=0

业是恰的(exact) 若存在し1形均从使业=de

exact =) closed

closed = exact locally

对摄流形外,闭的七形动致是局域惨当的

机流移M=IRⁿ closed =) exact

M的任-EP处有雏戏N,在N上存在6-1形计场点使业=他

某-性檢|ocally成包: 对M中任三声,都否在个争喊Np使这-性低成区.

Eg 流形M 同部地像IRM、即每-6都有个舒诚与IRM中个开集存在微剂阻。

而非M转像IRn

推论5-1-6 当M-1R'时普遍微积分有

综定的数X(xxy)及Y(xxy),存在函数f(xxy)使 df=Xdx+Ydy

$$\iff \frac{3\times}{2} = \frac{3\times}{2}$$

Integration on the manifold. §5.1 流形上的积分 • 流畅的疑问 (1R3. Sap) 不明定的的流形上不可做积分 **二 流形的"距"** Def 1 n作流码移为预问的 (orientable), 若其上存在 C° 且处外非星的 n形式物 ε . 例1. R3 是玻璃衫 E=dx/dy/dz 多り2 Mobius Strip 孰馅斯茚 预购流形 Def 2 若在n维可段向流形M上选定一个C°且处处非塞的n形式物色、则说M是定向的。(oriented Amaifold) 设全和丝是两个C°且外处非塞的n形式场,若存在外外为正的函数 h.使 至二九丝,即说 (N维流形上的NB或物集后是一维矢量空间) 旦和丝给出M的同一作的 连遍流形上1人处外非零十连集函数 => 外外为正或处处为负 [连遍流形火能两种定门]. Note· 杨朴宝可是3瓜连通的(arcuise connected), 若X的任意两些可被-条在X中的连续曲线连接 流畅为连遍的(等价子弧连遍),若其底柘扑空间是连遍的(gia Def7) ** 生标条定向 → 选定流移定何 → 判断生标系定向 **** [石养] IR3E E=dx/dy/de =-dxndyndz' (right-handed) Def 3 M上选的以至为代表的定向后、开球OCM上的基底的 {(9,)07 叫做以至衡量为石手的 若O上存在处外为正的函数的使 $\leq =h(e^i)_{a_i}\wedge\dots\wedge(e^n)_{a_n}$. 其中 $\{(e^n)_a\}$ 是 $\{(e_n)^a\}$ 的对偶基 否则粉为至手的,一个生标剂叫右(左)手瓜,若其坐标基底堤右(左)手的, ·n维农门流移上的n两ti为业的积分. 对偶生标基矢 {(dx*)a}. 1Rn 對₩O 被秘含GCO $\underline{\omega} = \omega_{1-1-n}(x^{1}, \dots, x^{n}) dx^{1} \wedge \dots \wedge dx^{n}$ n两市场 ω + 生桥系(xμ) → n元函数 ω,...n(x'--x*) N元函数(坐标传教)

Def 4 设(0,4)是n约设向流的M上的石产生标本,业是形存在CO上的n形式的

 \mathbb{R}_{1} 业在G上的秩分 (integral) 定场 $\int_{G} \omega \coloneqq \int_{\mathcal{H}GI} W_{1...n}(x_{1}...x_{n}) dx_{1}...dx_{n}$ [n重秋分] 4[6]是IP上的开绕

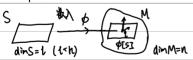
Note:

11) 以在G上的秋岁与所坚在了生桥东天关,但在予生杨参一左子生杨参相差负号

byn=2 bylaj: Je w = Jylez W,2dx/xdx2

$$W_{12}' = \frac{3\chi_{1}}{3\chi_{1}} \frac{3\chi_{12}}{3\chi_{12}} M^{11} = \frac{3\chi_{1}}{3\chi_{1}} \frac{3\chi_{2}}{3\chi_{1}} M^{12} + \frac{3\chi_{2}}{3\chi_{1}} \frac{3\chi_{1}}{3\chi_{12}} M^{21} = M^{12} \left(\frac{3\chi_{1}}{3\chi_{1}} \frac{3\chi_{2}}{3\chi_{1}} - \frac{3\chi_{2}}{3\chi_{1}} \frac{3\chi_{1}}{3\chi_{12}} \right)$$

$$\det\left(\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}\right) = \int (Jacobi).$$


 $\int_{\mathcal{H}[G]} W_{12}(X',X') dX' dX'^2 = \int_{\mathcal{H}[G]} \underline{W_{12}} \left| \det \left(\frac{\partial x''}{\partial x''} \right) \right| dx' dx'^2 = \int_{\mathcal{H}[G]} W_{12}' dx' dx'^2.$

も(x', x)→(x', x') 右一右 丁つ0

四流的定向→生标轮的—→秋浒号

马业在全流对M上的秋分 「M业由局部积分"接完"而成 [单区分解].

·N维流码中嵌入子流移上的积分

(形成场丛 → φ[s]上的1形成场丛切于φ[s]/不切于φ[s]

φ[s]上的「時間が切すず[s]: Vqeф[s] 丛|q是Wq上的し形式

不切,p[s]的【码试场业把每至gep[s]上的Vepf任意化元素变为了字数 人的作用范围限制在We 切押的的从

Defs 设从a...a.是七维与流形中[S] CM上的七形式的 中[S]上的工時前的 Aa...a. 科的 Ma...a.在中[S]上的限制 (restriction) \$ Ma--a, | q (w,) a, -.. (w) a = Ma, -.. a, | q (w,) a, -.. (w) a. Hepts (w,) a... (w,) a = Wq, 七形成的丛在6维与海的中[SI上的积分定义为 「be[si 丛 = Sorsi 丛 &5.3 Stokes 定理 Stokes' Theorem. · 39组织空间推了至带边海移 Stokes 健理 \(\int_S (\vec{p} \times \vec{A}) \, dS = \vec{q}_L \vec{A} \, d\vec{l} Gauss定理 ∭v(v.A)dV= ffs A·ds 带边流畅例子: |Rⁿ⁻:= f(x'···x^n)e|Rⁿ| x'<0 } 这界为 | Rn-1 := { (x2-..xn) e | Rn | x1= 0 } X'≤ 0 定义n维带边流形N (monifold with boundary), N的覆盖(Out的每一樣Ou 同胚于IRM的一个形集 N中全体被映到 71'=0处的点组成 N的 这界 JN = N (boundary) IRM-ƏN为n-1维流移,内部(indurion)i(N)=N-ƏN为n维流移 N= i(N)U >N 例: R3中的乳啡件B为带边流移 B=ilB)US2是海流形 Claim 5-3-1 Stokes定理

设n维定向流形M的累致3集N是个n维带也流形,业是M上的n-l形成场 1可微性至少为Cl)

 \mathbb{R}^{1} $\int_{\mathrm{in}} d\underline{\mathbf{u}} = \int_{\mathrm{J}} \mathbf{u} \underline{\mathbf{u}}$

Note: M的原(n-form field) 至限制在N上 => N的定向. ⇒在N的边界 DN上自然诱导出一个定例至 例2·(IR·Sab). L是IR中的光滑风险曲线,S是L包围的形集 → x' A是(R', Sau)上的失量场 Green BE [S(\frac{2A_c}{2x'} - \frac{2A_1}{2x'})dx'dx^2 = \begin{picture}(A_c \ dl \) M=IR* i(N)=S DN=L N=SUL. 1-形式Wa=Aa=JabAb 对偶坐标基矢钎 Aa= Au(dx4)a $d\underline{w} = dA_{1} \wedge dx^{n} = \frac{\partial A_{1}}{\partial x^{n}} dx^{1} \wedge dx^{n} = \frac{\partial A_{1}}{\partial x^{2}} dx^{2} \wedge dx^{1} + \frac{\partial A_{2}}{\partial x^{2}} dx^{2} \wedge dx^{2} = \left(\frac{\partial A_{2}}{\partial x^{2}} - \frac{\partial A_{1}}{\partial x^{2}}\right) dx^{2} \wedge dx^{2}$ $\xi = \int_{U(N)} d\underline{w} = \iint_{S} \left(\frac{\partial A_{v}}{\partial x^{i}} - \frac{\partial A_{i}}{\partial x^{v}} \right) dx^{i} dx^{i}$ $\int_{\mathbf{N}} \underline{\omega} = \int_{\mathbf{N}} \widetilde{\omega} \quad \widetilde{\omega}_{a} = \widetilde{\omega}_{i}(t) (dt)_{a}$ 斯L的 局域 對於 为线长 t $\widetilde{W}_{1}(t) = \widetilde{W}_{0}\left(\frac{\lambda}{\lambda t}\right)^{\alpha} = W_{0}\left(\frac{\lambda}{\lambda t}\right)^{\alpha} = A_{0}\left(\frac{\lambda}{\lambda t}\right)^{\alpha} = A_$ 限制的键. $\widetilde{w} = A_1 dL$ 左= lan w = fl Aidl =) Green定理是一般流形MLStokes定列的特例 流的上对形成场秋万→对出数秋分 多54 体元 Volume Flement. Def 1 N维可读问流畅M上的任个CO且处外非雹的N两式动色形为个体元(volume element) Nota:定勺箱的是-1体无至的等价类<u>{ E1</u>= k丝 (h>o)]_ 体无定勺相略 啶向5有两个,体元有A服3个(体元选锌在一个等价类+任意) 流码M+度规划 9ab: 体无选定特殊.

(M,gob) N=上 体元 Earaz Py Earas=gablgabz Ebbs.且 Earas Etra是标量场 利用政化基本, 魏政康规 {\(\alpha_{\alpha}\an\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha}\alpha_{\alpha_{\alpha}\alpha_{\alpha}\alpha\alpha_{\alpha}\alpha\alpha_{\alpha\alpha_{\alpha\an\alpha\a = 2(21)2 考虑治妊娠把 5→1 Ea.as €a.as= -2(€12)* 正列于基底下 特定作元: Ea,...a,在正交归一基 {(e^)a}的分量满足 E,...n=±| 右瑳为正,在葑基为伙. $\text{Rp} \qquad \text{$\mathcal{E}_{a_1\cdots a_n} = \pm (e')_{a_1} \wedge \cdots \wedge (e^n)_{a_n}$}$ Ea, -- an Ea, -- an = (-1) h! 满足岭的 Earman 称为与良规 gab 相适宜(相案)的体元· + 与比内相密 → 確性・体元 ー 速配体元 Claim 5-4-1 设至为适配体元,{(en)*1及{(en)*1为基底及其对偶基底, g为gas在此基底的方量 组成的行列前,1g1为g的绝对值 (±对应右,左键底) R') {a,...an = ±√181 (e')a, ∧ ... ∧ (e")an 例如(IR³,δab) 右至管督教{χιζι≧}→定阿 ≤=dx∧dy∧dæ·且 ≦为适函阵シ R³ 「G至= Ga 1 dxdydr= VG G的特殊. -dV 推广至任意带工定量规gab的定何流移N,至为适配作力 (N兰是N的 (用乳黴量的)作款 (1维.2维为嬢.面款) Claim 5-4-2 互联起运动与数算符与体元 冗 Ea.--a. = 0 Claim 5-4-3 5ta, ... 8aja, 5aja, ... 8an 1 = (n-1)! 1 8 toja, ... 8an 1 bn Claim 5-4-4 (a) $\varepsilon^{a_1 - a_n} \varepsilon_{b_1 - b_n} = (-1)^s h! \delta^{[a_1]}_{b_1} - \delta^{a_n 3}_{b_n}$

b) & a. . . . ajajin . . . an Ea, . . aj bjin . . . bin = (-1) 5 (n-j)! j! stajin . . . San I bin

§5.5 函数在	注流形上的积为,Gauss's law	Integral of fun	ction on the Manifold	, Gauss's law
Def 1 谈名为	流移M上的任-体包, f为M上的	(0°头数,页)	N=2 (M, gab))
f在M上的补	物良炒n粉物feeMb的	种分,即		
Smf	= JMfE		Y f	ıR
节度规的茅	掰→ 趣啡一的适配件之一	→定义函数积分	•	- 11
	(R3, Sab) 记fE=业 业=	-fdxndyndz.		
	(M)(2)为石野的新 fs	iyxya结得活	送数 F(x,y,z)	
	J.Z) dx/dy/dz SMf=			
{r.o.4}*	右环坐标系 ds= dr+r2(0	dθ²+ siκοdφ²)	g=r4sin20.	
•	±√191 (e¹)a, ∧ (en)an			
	odradoady f5			
w=F(rio	,φ) ršino dradoady ∫mf:	= \f(r,0,p) r2si	no drdo dq	
·Gauss灾理	a			
	3岁钟元 2	貨値を		
Claim 5-5-1	设M是n维定向流形,N是	M上的n维紧致	带边嵌入子流形,9	ab是M上的度规
	(配作元私适配导数算符,V*f			(M. gab)
	[i(N) (VbVb) & = San Vb &b		(٤
Pf. Stokes	定理 ∫i(N) dw = ∫aN ω	记叫我场点	<u>u</u> = V ^b E _{ba1} an-1	(1)
	c(Vb{Haran-1]) 是n形計分			强问 <u>m</u>
> d≥5≥9	K差-↑因子 N∇[c(Vb气bla,,	an-1)= h &ca,an	. h为N上迭数	
	a:an缩并 在= h(-1)sn!		_	
	左= N & ca,a.	-1 an-1 C(U ^b Eba;an-	、) 缩并传染性	
	<u>= ₹</u>			

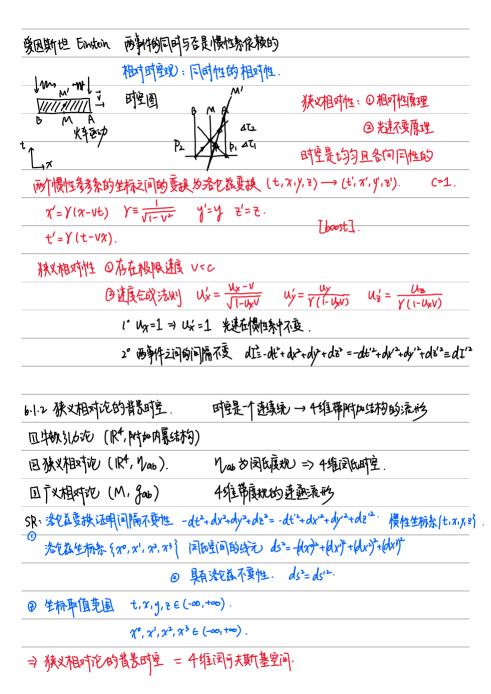
科花 Clain 5-4-2的证明 Ea,...an = (-1) n! => Vb Ea,...an = 0 Pf: 1初达中 0= Ear-an Vb Ear-an + Ear-an Vb Ear-an = 2 Ear-an Vb Ear-an
 galbi --- ganbn Ebi---bn Vb Eai---an = Eai---an Vb (galbi --- ganbn Eai---an)

 由 Vb 的良规适配性 = Eai---an Vb Eai
 = Eai...an Vb & ai...an 由此 Vb Ear-an=0 (=) Vb Ear-an=0 妖 左= n e^{ca,...an} Eba,...an, ∇cVb = n! (-1)5 ∇b Vb (4)5 (M-1)!11 fc 左=右 网知 h= 76Vb ⇒ dw=hを=(DbVb)を 得 Sin)dw= Sin)(DbVb)を= Son w= Son VbEba...an 对于非类t超曲面 ƏN·旧·化流矢 na 满版 nana=±1→N的良规gab在>N上活导度把 hab=gab Fhanb ≦是(N,goo)上的适配体元 ⇒ Ê&(N,hoo)上的语导体元要求: ① 笔与度规 h w 相选面 $\hat{\xi}^{a_1 \cdots a_{n-1}} \hat{\xi}_{a_1 \cdots a_{n-1}} = (-1)^{\hat{s}}_{\uparrow} (n-1)!$ 用hab开指标 has对称对较对数 @ 25 aN的诱性的 Ea,...a...相塞 $该n^b 为N的外侧单位该矢(以i(N)作为内部),则诱导体元 <math>\hat{\mathfrak{L}}_{a,...a_m}$ 与N上体元 $\mathfrak{L}_{a,...a_m}$ 美数 Êa,...a.,= Nb Eba,...a., (Laim 5-2-2 (Gauss定理) 设M是n维定向流移,N是M上的n维累效带边嵌入3流形,gab是M上的原规, 至和Va是适配作元和适配导数算符,包是∂N上的诱导体元,∂N的外向法矢/nª满皮 nana=±1, Pf: 全W=VbEba,--an Dit Jan VbEba,--an = Jan W= + Jan Vana ê 指 分心 限制在31/上 wa,...an-1 = ±Vbnb &a...an-1 看提一些上的n-1形式 故须证 -> War-an-1 = Kubnb &a, ---an-1 D证 K=出

法挺賉 切起幽面. 右手玉刚-茎辰 {(e)a=na,(e)a-..(en-1)a} 对上价两边维并 (e1)a1-...(en-1)at= KVbnb 21,...(M) = ±KVb(e°)b 21,...(M) = ±KVO Ê12--(n-1) = 1. $N^a N_a = \pm 1$ $N_a = \pm (e^o)_a$ [(e)a=na,(e)a-..(en)a] 右种生(附正 {(e)a-..(en)a)吞挫 I= Wan-and (e) a... (end) a-1 = Wan-and (e) a-.. (end) and = VB Eba, ... and (P1) a, ... (Ph.) an-1 = VME, --. and = V° EDIZ---(N-1) = V° 左=右9知 ±Kv°=V° K=+1 Q.E.D. 若入N类斑曲 ,即nana=O 诱惊埃物 fi Ea,...an=nta, êa...an] Gauss定理的成立. 多56 对偶做分形式 Dual differential forms. $\Lambda_p(t)$ 为peM的铅化形式的集合 $din \Lambda_p(t) = \frac{n!}{U(n-t)!} = din \Lambda_p(n-t)$ M为带展规划的实内流形,至为硒C体元 ⇒ 在/m(1)和/m(n-l)之间定义目构映射 +:/m(1) → /m(n-l) [Hodge star *] Def 1. YWENM(t), 定义业的对偶维分形式 (dual form) *WENM(n-t)为 *Warman-e:= to wbr-be Ebr-be arman-e 其中 wbr-be=gbrangher Warman 例如 fight bo形成物, 对构形成物(*f)a,...an = 10; f Ea,...an = f Ea,...an. *f等与铜规题配的体元至的f倍 $\int_{M} f = \int_{M} f \leq = \int_{M} f$ 对偶形的动物的 *(*f) = * (f =) = 1 f = b1 - bn Eb1 - bn = (-1) f. (| aim 5-6-1 ** W = (-1) S+ E(N-1) W (-1) & N!

2-形饰	n=3 t=2 /μ(2)与/μ(1)之间体际/构使ωε/μω)与*ωε/μ(1)认同
3-形式场	n=3 l=3 /m(3)与/m(10之间存斥\构使We/m(3)与*We/m(10认同
消除3使用	1,2,3形术场处要性,可用函数与矢量场代替.
	美 A·B= Sab AaBb=AaBa
	又東 Wab = Aa N Bb = 2A[aBb]. (Aa = Sab Ab, Bb = Sab Ba)
	(*W)= 主Wab Eabc = Eabc A ^{[a} B ^{b]} = Eabc A ^a B ^b Eabc 为适图代本
	{x,y,ie} 知時能称生脈系, finf,fl 正刻=基底 コ Cobe 为Levi-Civila符号
	$\mathcal{E}_{123} = \mathcal{E}_{131} = \mathcal{E}_{312} = -\mathcal{E}_{132} = -\mathcal{E}_{213} = -\mathcal{E}_{324} = 1$
	*Wk= Eijk Ai Bi K=1,12,5为 AxB的第1/0量
	$\forall \vec{p} \vec{A} \times \vec{B} = \underline{} = \underline{} (\vec{A} \wedge \vec{B}).$
可兵勤论:	可是与欧城(g.W. S.w.)基础的导数算符 Za
₹f = daf	$\vec{\nabla} \cdot \vec{A} = \partial \alpha A^{\alpha} \qquad \vec{\nabla} \times \vec{A} = \mathcal{E}^{abc} \partial_{\alpha} A_{b}$
P·(AB)= ∂	$\partial_{\alpha}(A^{\alpha}B^{b})$ $\vec{\nabla}\vec{A} = \partial^{\alpha}A^{b}$ $\nabla^{\lambda}\vec{f} = \partial_{\alpha}\partial^{\alpha}\vec{f}$ $\nabla^{\lambda}\vec{A} = \partial_{\alpha}\partial^{\alpha}A^{b}$
分梯度,旋度	散度 用外级方表示
Claim 5-6-2	设f, A是>维欧战宝间的运数与矢量场,则
grad f = df	$\vec{A} = \nabla \vec{A} + \vec{A} $
R3是职流型	3→ PP上的闭形术为 dw=0必恰当W=d业
小无旋矢	量吻处可知梯度 ∮lēdī=0⇔ curlē=0→3标量吻中stē= grad中
コ モ散矢	量物必可勘放度 ∮sB·ds=0⇔ divB=0⇒ 3矢量物及sitB=(urlA
Pf: wrl ==	v ⇔ *(dE)=0 ⇒ dE=0 (试的) ⇒ 3p,st E=dp(恰当的)⇒ E=gradp
div B=	· ⇔ *d(*B)=o ⇒ d(*B)=o (闭约)⇒ 3㎡5t *B=dA (馅的)⇒B=*dA →B

· 微分11行双三理解 3维欧低宝闰(肷,ઠ配)上的矢量代数和矢量切论)


1-形式物=对偶绳动变为失量的 Wa=fab Wb.

11) 0- 18战场 = 積動

M=1R3 gab=Sab

(1R3, Sab)

影章 狭义相对论 Chapter b Special Relativity
§6.1 4约瑟达基础 Foundation of 4-dimensional expression
61小预备知识,[模型注意]。
事件 (event). 空间的一点和时间的一瞬的结合 (\overline{x} , \overline{x}). — 时髦 (spacetime point)
时室 (spacetime): 全部事件的集后.
粒子 (particle) { 有 (静) 质量的: 质区 (point mass)
粒子 (particle) {有(静) 版量的: 版区 (point mass) 1 (静) 版量的: 光子 (photon).
粒分的世界线 (world line): 粒子的全部历史由一部分,外位于时空中的一条曲线
⇒ 時聖图 (spacetime diagram):豐盈向上代表時(內流逝,4年新)代表某一时刻的全空间
观者 (observer). 观察者模型化成的质点
标争钟(standard clock)、观省外的钟,读数为观省的固有时(proper time)
移系(refunce frame): 无数观绪的集后 罗满处时至(实料一个形缘)中的任三百旦仅有
92内的一个观看的世界线经过 [世界线的线孔].
刚性外:参考外内的世界线相互行
伽利蛉 Galileo ①枹虾帷Г理(Principle of Relativity):所有惯性务干积,
所有物理设存在行行"""""""""""""""""""""""""""""""""""
② 伽利略变换 . Y↑ (***********************************
绝对时坚则:同时性的绝对性(-1参参中西事件同时,则所有制为两事件同时)
粒子相对于西参考系的速率关系:伽利路速度合成 U'=U-V
预斯韦 Maxwell ===================================
静山观看与运动观看观测光速者的 c <u>矛盾</u>
A. 相对性原理对电弧理论不成它,存在一个特殊惯性条件光速为c
B. 预期市电磁建论不函构 以太(ether)

Physics	Mathematics
惯性性标系 inertial coordinates	治疗微生标系 Lorents coordinates
iālā interval	风比绞元 Minkowski line element
背景时空 background spacetime	4维闭氏空间 4-dimensional Minkowski space
双右 observer (point mass)	类时曲线 timelike curve
惯性观查 inertial observer	类时测性镜 timelike geodesic.

狭处相对论物理学是研究物理器体在河瓜时空中的演化执择的学问。

发生在闭的时空中的任行物理现象都属于狭义相对论物理等范畴。

tach 和对人员性生标系).	
$U := \frac{\sqrt{dx^2 dy^2 dz^2}}{dt}$	
$\frac{dx}{dx}$ $\frac{dx^2}{dx^2} = -dt^2 + dx^2 + dy^2 + dz^2 = -(1-u)$	t) dt'
① ds=0 (=) u=1(c). 类线元	
② d³<0 ⇔ U<1(0) 类时统记	
狭义相对论的两个重要基本信务	4维语言。
①光油于行河慢性系的速率 从=1 👄	光子世界线是闵的时至的类光曲线 (null)
② 恢适相对于任何慢性条的速率 u<1 👄	族些界线是河的时至的类时曲线 (timelife).
涉及连辛U的定义 如"院义的连卒"不得超光症"	真产生门题的情况:
"站头迷"但不连锁相对论一星条遇行速度	世界线为类全曲线的质点
跑火速"但不能携带信息与能量	

6.1.3 惯性观者和惯性系.

/ y(t) x° 生肺线· 惯性观者: ① 在阶有观者 中 特殊的 - 类观者

(产)a=Ta (inertial observer) ②各惯性现在平权.

3维语言:惯性观者相对于所在的惯性参系{t,x,y,z}的建率U=0 惯性考矣. ~ ~ (云) ~ = · 坐标纸的普通导数算符 · · 作用了该坐标系的坐标基矢 (云) ~>零

=> (元) 3 (元) 0=0 闭纸时空的测地缘 話 → 类时测地线·

沧兹生标的每-条七生标线/-条类时测也线 对应于一个惯性观者

全体七生标线/-组刊的类时测地线汇组成的卷移和为惯性参多

惯性参考条中的涂仑菰些标系补为惯性生标系,每一旦有生标(20,21,21,23)

[同-系内所有惯性观者的世界线为平行测地线]

贬"自由" 刘依惯性运动" ⇔ 质点世界线为类时测地线.

· Claim 4-3-6 4维汉氏町宝(1R4, Nab)中 (249) → (244).

洛セ兹系之间的生标授换 ←> (IR4, Yas)中的等度规映射.

任- 等度规映射 引由若干基本的等度规映射复定成

基本等度规映新 - 历立:反射和反演。

- 连集1a) 时空移 4个独立 Killing 矢量的 (产)", (产)", (产)", (产)" |b) 室间旋转 3个独立 Killing 矢量ゆ -y(六)*+x(六)*

同个惯性参考和部生标款同气 -E(3y)a+y(3z)a, -x(3z)a, E(3x)a.

不同惯性参参中生标签之间 (C) 伪转动 3个独立 Killing 矢量场 七(款)2+分(卖)2

(世級利司). t(計)a+y(計)a, t(計)a+z(計)a

6.1.4 国有时与生标时.
Def 1 - 个钟粉为标准钟戈理想钟(ideal clock),范佗自己世界线上任产P.1.B的读数[個晰问]
$T_{11}T_{12}$ 差即 液线在 P_{11} . P_{12} 的线状 T_{12} - T_{13} = $\int_{P_{1}}^{P_{2}} \sqrt{-ds'} \left(\frac{1}{c}\right)$.
√标准钟要求走时率(rote).
参考系内的钟目步问题涉及和始设定(setting).
(clock synchronization)
回观省分析的 将钟讯零一信号传播需要时间、无法同步 A B to tg=0.
国观看G在T发射光, G'在TD、原外光谱调整, G在T收到成射光
P.是B.世界线上P.B.段中点,G在B.调塞 ⇒ 钟同步
海生物条件 x°是类时生标 1/ab (京水)*(京水)*<0 不, x1、x1、x2、是类空生标 1/ab (京水)*(京水)*>0
事件P在坐标系{χ°,χ',χ',χ',χ'}中的坐标ı虾(coordinate time):生杭v蚁中任-巨P 的χ°值
惯性务(定义域为全体 R+) 生标时 叫 惯性生标时.
本 指比 閉线 → 固时 指比性
Prop. 6-1-1 该L(T)是某族区的世界线, T为国有时, 长为惯性条况的生标时
$R = \frac{dt}{dt}$
11. 20 00 (1 0)
$\frac{dt^2}{d\tau^2} = \frac{1}{1-u^2} = Y_u^2 \Rightarrow \frac{dt}{d\tau} = \left(1-u^2\right)^{-1/2} = Y_u.$
Note: 惯性观者在本惯性斜的性柄时等于自己的国在时 dt=dt(U=0).
6.1.5 时室图 以惯性条果作为基准 a. G.
Go. Gi 是惯性坐标系 完中的两个惯性欢者 Go 13/代少十二(次)
Go. Gi. 是惯性坐标系 农中的两个惯性欢看 Go ry (t), (xr) Go'是惯性多参系 兄'中的惯性欢看,见'相对于兄选率小了 C bost ry
河瓜町星的町里图中类时直线为河地线,对应于果厂惯性参考条中的 一个惯性观看.

里面线表明惯性观者相对惯性条兄静业,余	祖线表明惯性观者相对惯性条咒的驱沙
%tagik t'=γ(t-vα) α'=γ(α-vt)	Go'世代 f q'=o· ⇒ t= √g
○ 欧氏克桃考院 x'轴与t'轴不正交 [基在生标	永逊[t'=0 ⇒ t=vα
② 河的京根孝熊 洛维尔(ゼ,ガッグ,をり) 満た	lus(zt) (lagr) B=O が袖5t 軸政
惯性条咒与咒'的平权性没有被破坏	
更换基准惯性努力咒' t \	○政性 ②曲线镀.
更换基准惯性外为界'	boost X' "时空险的欺骗"
t	`
ア マロ サーナン+ x2= K (常数)	爸与O价连直线段等t、(非圓)
较1曲线	
· 1+1 维时空图 🕶 世界线	
3+1 组时图 — 对松性 — 2+1组时室	图 ← 世界面 (world sheet).
·闵允时定的惯性参参名	[兒私山刻的空间]
与农中所者惯性观者世界线正交的 3维和	(超曲面) — 同时面
dt=0 诱导线元	$ds^2 = dx^2 + dy^2 + dz^2$
—————————————————————————————————————	时刻的空间是3组欧6空间
另一惯性条咒'同时面与先同时面不同 → 1	同时性的相对性
6.1.6 狭义相对党与牛顿时室(非狭义相对论的	宝)结构的对比
狭树对论: 4维浏览时至(R4, Vab) -	→ 时间和空间是彩生的相对概念
"相对":同一时全有多种不同的	
	·

牛顿时室: 时空流移为R ⁴ (仅能配导数Va)
绝对时间 (absolute time) t: IR4→IR.
等t面 Zt (IRt中的超曲面) 粉炒的同时面
SR: (absolute simultaneity surface).
P., 凡在{t.x 条的同时面. {t'.x' 条中不同时
族义相对论中"同时"概念是相对的,是参参徐颖的。
族义相对论中"同时"概念是相对的,是参参校依赖的。 牛顿理论中"同时"概念是绝对的,不依赖参考系的。
·事件因果联系 pe1R4 3个互相无交的3集 IR4-{P}=M1UM2UM3.
M,= { 9ε R4-9p 3 存在先迕历事件 2征经历事件P的观者 3
M2= {9+1R4-{9} 存在先经历事件P后经历事件 l的观查 }.
M3={9< R4-191 不存在既经历事件2又经历事件P的观者 {.
Newtonian: IR4 SR: //// Re /// M3.
Ms Ms //// Ms
从P到化的测电线切矢Ta为指向未来(futwe-directed)类时矢量
从P到它的测地线切实Ta为指向过去 (past-directed)类时实量

§6.2 典型放应分析 Analysis of typical effects.
6.2.1 尺缩效应,
4维语言中尺子是当时象 免办基准系
长度·某一惯性分中时刻t处世界面在同时国上截出的线段长
农和中R在t=0时刻的收取 OQ, 农种农在t=0时刻的收取 Ob
发长是绝对重,与坐标教无关. la= √-0+宿= xa lob= √-ti+xi = √12-12-12-12-12-12-12-12-12-12-12-12-12-1
lob=VI-Vi loa V<1 枚 lob < loa 动火收缩 lob=YI loa.
6.2.2 钟慢放应,
考虑惯性紊鬼中的两个标准钟 C.G.和惯性紊鬼中的标准钟 C' C'钟椎对于G.G.以
校在曲线 4 8的同时面 速度 以运动
C1
从咒条角度 a时刻 Ci针读数为 loa=√fta→1=ta Ci钟读数为 loc=loa=ta
C'钟读数为 lob = J[xb-til]= JI-V-ta V<1
to lob < loa 动钟变慢 lob = Y - loa
从咒'新霞 t-0时刻 G.钟已有读数 lcd=8>0.
b时刻 应比较Co的Lab-S=lbd与C的Cob
故 lob > lod 神钟变慢
· 比钟方式 [无需借助第三只钟].
①光子从也还染光测地线到达a,loe <loa td="" 动钟变慢稍缓更甚上于是类光测地线<=""></loa>
1201 / 1-201

loa=t loe=t' lof=p lfa=l=lfe.
n T=D+9 ¬
$\mathfrak{g} \ H = \frac{d}{P} \qquad \qquad 7 Y$
卫 ; 市 远 的 中 变 慢 的 问 趣 时 的 比 钟 舌 法
②
动钟较快
& 讨论比钟问题时必须事先说明比钟方式的每一细节
6.2.3 鸾3佯谩 (twin paradox).
1 【 甲一年的中(惯性欢看→世界线坚直,为次性线)
甲 トマン ひ一炷熟葯 (非惯性观者→ 非洲地线)
p 多数应的时望 P分手 2重逢
⇒ 甲乙两线介于P. 2之间的 固有时间/线长的比较问题
闵的时空中两点河类时测地线是该两些间类时线的最大者 47亿
故重逢时乙比甲年轻, 特例: Lp=Y亿>亿
争论代表: McCrea us Dingle.
实验验证: 铯原子钟 Hafele and Keating (1972).
- PRI P.
○ 钟慢效应的结论是对双方平等 而要3效应的结论对双方不平等(都以为Z此甲轻
答: 钟慢放应前提是两个观者都做惯性运动 [惯性纸料]
写3效应中有-5不做惯性运动(世界戈非测地线),还则分形不会重逢
例如《星际务域》 库珀与墨菲父女

1/V3/	
③ 弯3 放应的结论是做加速运动的兄弟较年轻 . 加速度是相对的, 会导致 乙叶甲栓	?
答:3维加速度走相对的 非惯性运动()加速运动(4维加速)	
4维和速度是绝对的(与观者.参考表歧坐标系等从为因素无关) 4维加速参考	
惯性运动与非惯性运动的概念是绝对的: 顶点做惯性运动(=>世界线为初地线)	
@ 享3放应属于广义相对远,仅在狭义相对近范畴内无法解释.	
些、错误	
① 无需利用非惯性务计算,比较世界线长(5生标系天美的几行量)即可	
③ 狭义相对论物理背景为千维环的空.	
广义相对论物理背景为弯曲时空(引放交).	
加速运动不会导致时至弯曲,	
一非惯性生物系的既符户。不知零十四柱变曲	
Note: 爱因斯坦转盘问题.	
Ref: Rindle, Sachs & Wh (黄中48). P=Null to u= 皇P.	
枝巧、"横"程"斜对的"单用"边线长针型长的Yu=(1-4*)-1/2(>1)信.	
库门 库噶	
库认为的库长	
1.2.4 年降得選 (garage paradox) 库油的车长.	
汽车与车库静长相等,汽车的速速库·车间时间一个车边的车长。	
· 引个U: 347[7发头立,午放入个]	
特:动车收船,放下船	
同时性的相对性 \$ 数结论的相对性	
"宠爱的飞发下"绝对性问题无意义 辑 英 库中基下有条	
V '	

至6.3 庚运运动学和动物学· Kinematics and Dynanic of particle. 伽利略t加吸性·物理定律的数学表达式在伽利略变换下不变(牛顿加学). 治仑兹th变性(Lorentaion covariant),物理定律的数学表达式在治仑兹变换下不变 · 珑字恒律. 所受的力 \vec{f} 为 \vec{v} 董变化率 $\vec{f} := \frac{d\vec{r}}{dt}$ ⇒ 牛蛟第-建律 F= m du = ma 牛顿第三庚律. Fi=-f2 => 益(Pi+P2)=の 总涉量守恒. 狭刈相对心中动量P不}猛凇盆协变性.—— ① 伽利酚变换 . U=U'+V=2V Pm=mu=2mV Pk=mev=2mV 守恒. ③ 潋萸换. U= U'+V = -2V 1+V'V = -1+V'2 P前=MU=2mV P= MEV= 2mV 不守恒. ⇒修改动量定义(质量随速率增大而增大) m→m P:= Mxū Mu为运动质量 m.为静质量. $\frac{2M_{N}V}{1+V^{2}} = (M_{N}+M_{0})V \quad \Rightarrow \quad M_{0} = \frac{1-V^{2}}{1+V^{2}}M_{N}$ $1-u^2 = \left(\frac{1-v^2}{1+v^2}\right)^2 \qquad M_0 = M_U \sqrt{1-u^2} \quad \stackrel{\longrightarrow}{\text{M}} \quad M_U = \frac{M_0}{\sqrt{1-u^2/c^2}} \quad \gamma_U \equiv \frac{1}{\sqrt{1-u^2}}$ 线动量 P:= Mu u= Yu Mo u. カ デニュー デニュー 機性条依頼, 砂省ショ存在受換律 ·能影恒律.质量相律.

•
$\frac{dE_{k}}{dt} = \overrightarrow{f} \cdot \overrightarrow{U} = \frac{d\overrightarrow{P}}{dt} \cdot \overrightarrow{U} = \overrightarrow{U} \cdot \frac{d(m_{u}\overrightarrow{U})}{dt} = m_{u}\overrightarrow{U} \cdot \frac{d\overrightarrow{U}}{dt} + \overrightarrow{U} \cdot \overrightarrow{U} \cdot \frac{dm_{u}}{dt} = m_{u}U \cdot \frac{du}{dt} + U^{2} \cdot \frac{dm_{u}}{dt}.$
$ \frac{d^{2} u}{dt} = \frac{d}{dt} \left[m_{0} \left(1 - N^{2} \right)^{-\frac{1}{2}} \right] = -\frac{1}{2} m_{0} \left(1 - N^{2} \right)^{-\frac{3}{2}} \left(-2u \frac{du}{dt} \right) = \frac{1}{1 - u^{2}} m_{u} u \frac{du}{dt} $
$\Rightarrow \frac{dE_F}{dt} = (1 - N^2) \frac{dm_u}{dt} + N^2 \frac{dm_u}{dt} = \frac{dm_u}{dt} \cdot \left[\frac{dE_F}{dt} = c^2 \frac{dm_u}{dt} \right]$
$E_{k}(u) - E_{k}(o) = c^{2} \int_{m_{0}}^{m_{0}} dm = m_{0}c^{2} - m_{0}c^{2}$
版在逐率为以的总能量 $E=Muc^2=E_k(u)+M_0c^2$. 总能量 $E(这种质量)$ 特恒
质鱼在速率为从的动能Eklu) 质色青乳能 E。= Mo C³
(rest energy).
g·Mo=1g MoC= x10 ⁻³ x(3x10 ⁸)²= qx10 ¹³ J 公「岛原3绰释放的能量.
静能存储的位置 ① 组成物质的分子 原子的赶运动能量 (内能)
@ 分为之间、原为间的结合能
係分核型変为所は时 ③ 原子核目围电子激发态能力
Mo为勵核静飯量. ③ 原子核内部的结合能 (binding energy)
Mo C' = ことki+ こMoiC' 静能不守恒, K能量字恒 MC' = MiC+MoC2
ここ: Eki = Moc - 〒Mo; C 製度解放的能量.
$\Delta m_0 = M_0 - (m_{01} + m_{02})$
⑤ 原子核中基本粒子的静能 (光静能).
应用:电子(electron)与正电子(positron)湮灭出两个光子·
名能量 Eu= Muc 空神质量 Mu 守恒 → E= Eu=Muc Conserved
静能 Eo=Mo C ² 静质量 Mo 不守恒 → M=Mo invariant
=> E=YMc² 其 Y=(1-12/c²)-1/2·
予恒量:在坳埕这村中保持常值(邓極时间而变)的量
フ亦善 フBあ Mana 名 名 な Tang D 変 L 45 日表 本配 の 急

不变重:不随坐标系,参考和观看等人为因系而是的里。

	4约	鴰	邑	
•	431	31/0	彑	•

·
Def 1 版画的纤维速度(4速,4-velocity)以《是版画世界线(以固有时下为参数)的tD东
即
$\Pr_{\text{Prop } b-3-1} \stackrel{\text{Que}}{\approx} \text{ Tab } \text{ N}^b \text{ P} $
F: 国的时下是类时曲线的线修数,而以线长为参数的切实有单位长
仮区的世界线是绝对的 [不依赖于爹然,生核养基取]. ⇒ 4速(切失) 也是绝对的
⇒ 定义废经在时刻户相对于观者分的3速
① 鹿房测量一当时当地观测(local measurement):对发生在现者世界线上的事件的观测
考养由无处不在的观者组成,发生在别处的事件由别处的观者观测
② 瞬时观省(instantaneous observer):事件发生的时空巨户及户区处一个(指向未来的)类时
(P,Z ^a)· 単位糧 Z ^a 构成
② PE的协定问 Vp是4组的, 24/4.
① PE的切空间 Vp 是4维的, PE处现在G所茂受到的所有空间矢量集合 Wp 是3维的 Vp (din=3)
191:1页15分光 4 5)
P的同时面 こp = 在P的3维空间(正交 ラ 先 所 有 機 性 艰 者 世 界 线) W → マ → Wp = { wee Vp 1/ab we z b = 0 } 为 切 空间 Vp 的 子空间
Σρ ⇒ Wp = \weeVp \ Yab we Zb = o \ 为切空间 Up的 子空间.
ωρ e Wp 是观看G的皇间矢量(spatial vector).
P SE间矢量 VavVaZb=0 相对的,取决于观者G的4速Za
类空矢量 Nab V ^A VÞ >0 绝对的·
PE的Nao在Wp上的诱导模拟 hao=Nao+ZaZb.
Vp→Wp的找點映前 hab=Sab+ZaSp habvbeWp是vaeh在Wp上的投影

惯性难 G	LICI .仮盖.	ua依铢基((完)°	麻乳"(炭),	U=dt U	$\dot{i} = \frac{Ax^{i}}{Ax}$	_
201-2	tiri).	$\int_{\mathbb{R}^{2}} \left(\frac{\partial f}{\partial x} \right)_{0}^{x} = \left(\frac{\partial f}{\partial y} \right)_{0}^{x}.$	$\frac{dt}{dt} + \left(\frac{2}{3x^{2}}\right)^{a} \frac{dx^{2}}{dt}$	空间投影为	$\left(\frac{3x^{i}}{3x^{i}}\right)^{a}\frac{dx^{i}}{dc} = h^{a}bU^{b}$	
P	7 (lagt =	(元)"dt+(元)"d	x' P>1	G纽斯间为	dt L空间位移(示) o	(xi
排機性が		时规者G的3速				_
顿	攤. Y≡	-Zalla = - Nabi	FpMa = -Nm2	= المرا)=(۱,0,0,0)-100 Z° U° = U° = dt	<u>.</u> -
⇒ Y=-	Zalla 为两个	至 Za与Ua内积例	数.			
μ <mark>α</mark> = -	hable 为质点在	中蚁的4速的空)故影与观查G:	和医L的和	内积例数之比	_
以 观诸(河外为非惯性	双陆, 重要的仅在	r A 的 也 界线 在	中华的切头(4述) Za p.	
恢50	5.可以作非慢性	浴, 重的化	于上的世界线有	印色的切失	(4述) U ^a p.	
		(P, Za)测量质丘Lt			系咒的3进为	
W.	$=\frac{h^{a}b _{V}^{b}}{Y}$	其+ hab= fab+ 26	776, Y = - ZA	W ^{a.}		
Def3 庚	经对该瞬时 观	省的3建平是原	对瞬时观	的3速度失	Lua的长度	
u	= Juana	東 Na := Nab Nb	= habub.			
传	些的3速率为工	L光连 U<1 ←	⇒ Ned ucud	<〇	果线为类时线.	
W.	/ ^G / L(t).	瞬时观者(Pi Za)与质色世界线1	相切		
g. /	<i>]</i> .	— (p,Zª)为质 <u>⊆</u>	L的瞬时韵	上观者.		
//ÿ		— (P.2ª) 冰陡的	测地线G为F	施上的瞬时	静止惯性观者	
		— G所属的惯	性勢练为し在	中时刻的蹦	时静止惯性参参	P L
	-	— 咒内任-惯性	.坐核入人在	中时刻的瞬	时静止惯性物系(tıxi
Prop 6-3-	2 质色的4速	可借瞬时观者(P,	を)做3+1万	解: Ua=	Y(Za+ua)	
	其 LA为自	延相对于瞬时观	省的3建,Y=	=-Zalla.	γ ² α G 1 La.	
Pf: YV	La = Mab Wb =	(5°,+ 2° 26) Ub	= Ua-770	. G	y/2'ax	
		(a) = Y'(Z'a+ 11'0			Wp PX wa +YW	
4	迷 U ^a 是绝对的), 3+1分析提相对	的(与观角.生	旅新有关).	y'u	X

Def 4. 政版E的静质量为m,4速为U ^a ,刚其4动量 (4-momentum) 定x为 p ^a :=mU ^a
Prop.b-3-3 版区的4动量可借瞬时观看(P, Za)做3+1分解。Pa=EZa+pa.
$Pf: P^{\alpha} = MY(Z^{\alpha} + \mu^{\alpha}) = EZ^{\alpha} + P^{\alpha}$. $MY = Mu = E$ $P = Mu\vec{u} = YM\vec{u}(P^{\alpha}b)$ P^{α} P^{α
4 动量 P*的空间 5 量和时间 5 量 5 别是 3 站量 P*和 能量 E·
E=-Pa Ea. pa Ya=0 政
$-m^2 = m U^a m U a = p^a p_a = (E z^a + p^a)(E z_a + p_a) = -E^2 + p^a p_a = -E^2 + p^2$
\$ E2= m2+ p2 Ep E2= m2c4 + p2c2.
Def 5 版E的 4 加速 (4-acceleration)定义为 Aa = UbdbUa.
其中 Ua为质e的4速、db是51www的的导数算符 da1bc=0
① 4枷蒾是绝对的.
②46吨为雾 A ^a = 0 ⇔ U ^b ∂b U ^a =0 世界线为测地线,随做惯性运动
Prop b-3-4 质e世界线上各点的 4加速Aa与4还度 Ua正交,即 AaUa=VabAaUb=0
$Pf: UaA^a = VaU^b \partial_b U^a = \frac{1}{2} U^b \partial_b (UaU^a) = 0$
U ^a L(t). 对定义球在线上的色数以a以 ^a =-1 沿着线的切实从 ^a 求导
PAA 决定质巨L的3加速应比较L在PG及世界上5P紧邻的P'的3速
⇒借风生桥秋:L在任-邑p的3速u*在惯性生粉新的5量,ui= dxi
Def 6 设质트世界线 L(t) 在惯性坐标教 {t,xi}的系数表达式为 L: t=t(t), xi= xit().
IP] L相对于该条的3加速定义为 $\alpha^a = \left(\frac{\partial}{\partial x_i}\right)^a \frac{\partial^a x_i^{(a)}}{\partial t^a}$
與 xi(t)是xi=xi(t)与t=t(t) 结成的函数 xi= xi(t).

Prop 6-3-5 质色的4加速Aa在惯性系究的分量为 见为瞬时静业惯性生标剂 $ext{$A^{\circ} = Y^{+}\vec{u} \cdot \vec{\alpha}$}$ $ext{$A^{i} = Y^{2}\alpha^{i} + Y^{4}(\vec{u} \cdot \vec{\alpha})u^{i}$}$ 其中以和及为险组对于完全的3进和3加速 Y=(1-11)-1/2 N=(M·M)/7. Prop6-3-6 恢三的4加速等于它相对于瞬时静止慢性性标系的3加速。(Q=0). $A^{\alpha} = \left(\frac{\partial}{\partial t}\right)^{\alpha} A^{\alpha} + \left(\frac{\partial}{\partial x^{i}}\right)^{\alpha} A^{i} \qquad A^{m} = \left(A^{\alpha}, A^{i}\right) = \left(0, \vec{\alpha}\right).$ Def7 版区所受的4力(4-force)定义为 Fa:= Ubdb pa· [+F型体标→ 医的相对论 其中Ua和Pa是恢与的4速和4功量。 运动敌] $F^a = U^b \partial_b (mU^a) = m U^b \partial_b U^a = m A^a$ 在静质量不变($\frac{dm}{dx} = 0$)的条件下成立, Prop. 6-3-7 版的 94为在惯性生标系 $9x^{4}$ 的 空间 95量 95量 95量 950 等于 包析 960 3 为 对应 950 分 950 的 时间产量印等于3户的功率于·成的Y倍. $F^i=\gamma f^i$ $F^o=\gamma f^i.\vec{u}$ 其中 $\gamma=(1-u^2)^{-1/2}$ 以是废此对该系的3速证的大小 $Pf \cdot f^{\mu} = f^{\alpha}(dx^{\mu})_{\alpha} \cdot = (dx^{\mu})_{\alpha} U^{b} \partial_{b} p^{\alpha} = U^{b} \partial_{b} [(dx^{\mu})_{\alpha} p^{\alpha}] = U^{b} \partial_{b} p^{\mu} \cdot p^{\alpha} = F z^{\alpha} + p^{\alpha}$ $\mu=i \qquad F'=U^b\partial_bP^i=U^b\partial_bP^i=(\frac{\partial}{\partial t})^b\partial_bP^i=\frac{dP^i}{dt}=\frac{dP^i}{dt}\frac{dt}{dx}=\gamma f^i$ $\mu=0 \qquad F^o=U^b\partial_b P^o=U^b\partial_b E=\left(\frac{\partial}{\partial z}\right)^b\partial_b E=\frac{\partial E}{\partial x}=\frac{\partial E}{\partial t}\frac{\partial t}{\partial x}=r\vec{f}\cdot\vec{u}$ $\forall U^a = Y(z^a + u^a)$ $\Rightarrow e^a = Ez^a + e^a$ $\Rightarrow a^a = e^a \Rightarrow e^a$ 被分解的对象是绝对的,分解所得的量是相对的 (依赖于观者/生标答》解的方法) · 标轶. (eo)*=Za+世界线上的三个顶归-矢量场 {(ei)aeWp,1=1,23}(为3标架(triad) ⇒ 双名世界线上的四个正刻-矢量场 一 4维标架(tetral) 协 (e₀)^a=z^a , G. 定义在G世界线上. 任何时至至的任何独量都可用该区的牛标条作为基底表出 Za = (C) — 观者= -条定义3个标案场的类时世界线·

瞬时欢名 = (P,(4))a) (e)a=Za

dyad 2标, 旅.

[你惯性运动的光色转观者].

惯性观者=[©]世界线为类时测性吃线。○4标架不变(例如惯性生标条中的惯性生标基实)

564 连续介质的能动独堂, Energy-momentum tensor of Continuous Media.

竞集分布的介质: 宏观的统计平均效应.

宝间包ي的能量额度 动量聚度 能流程度 动量流密度等 世界线

(energy dousity) (momentum density) (energy flux) (momentum flux).

连续介质+电磁切 →物质切 (matter field) EX能量 E=Ymc2. 设宏观小体秋V内的静质量为m ,相对于某惯性套的 3速为以 3泌量 P=Ymū=(5℃)ū

m / T 碰橇度 中 = 亡能壓度 + x ti [流镀了=有餐度 / x ti].

3站壟९庋= 能湍蛩庋. (c=1). [堠印戛矢量].

能量-动量铁量 (energy-momentum tensor) Tab. 包含含种3维聚页. 性: 1. Tab=Tba 对称

2. 孤年教/任何封闭物版的 24Tal=0 [体现能量守恒.3%量守恒.角泌量守恒].

3. 对作真瞬时观者 (p, (e))a) (e) a 呈 a 空间3标集. (a)a

(Q) 该观者测得的能量餐房 从=TabZaZb=Tab 空间轮面记4Si/ lb 该观者浏得的3动量密度(能流密度) Wi≡-Tab Z^a(ei)b=-Toi

以该观者测得的3励效量(stress tensor) Tij=Tab(ei)a(ej)b

 $T\vec{l} = T\vec{l} - \Delta S\vec{l} - M\vec{l} + M$

 $\hat{T}_{ab} = T_{ij}(e^{i})_{a}(e^{j})_{b}. \quad T_{ij} = \hat{T}^{ab}(e^{i})_{a}(e^{j})_{b} = \hat{T}^{ab}(e^{i})_{b}\hat{J}(e^{j})_{a}.$

个咖(ei)b - △Si-侧对为侧的力· [相好作用实族是动量交换].

— 況似於初的3邡童流発度(鐘) 3邡童流発度(站) Ťab = Tij(eÌ)a (eì)b.

一单证时间范包ipris向寄达ASi的3%重

Def 1 Wa :=	·-Ta, zb 为瞬时观者(p, za)测得的 4秒量密度.
Prop. 6-4-1 E	晦时观者(p,(e,)°),(e。)°= 2°测得的 4边量影度可做如下分解
Wa= MZa	+wa 期从和wa=wi(ei)a分别是该观者测得的能量密度和3动量密度。
	w是该观者的空间只量
Pf: Wa在标	柴{(en)a}上的分量为
	$a(\ell^o)_{\alpha} = -T^{\alpha}_{b} Z^{b}(-\xi_{\alpha}) = T_{\alpha b} Z^{b} Z^{\alpha} = \mu.$ (= wi)
W' = W	$J^{a}(e^{i})_{\alpha} = -T^{a}_{b}Z^{b}(e^{i})_{\alpha} = -T_{\alpha b}Z^{b}(e^{i})^{a} = -T_{\alpha b}Z^{a}(e^{i})^{b} = -T_{\alpha b}Z^{a}(e^{i})^{b} = W$
	(e _o) ^a +w ⁱ (e _i) ^a =从そ ^a +w ^a · W ^a 依較于肥者. 午郊量底底
类比 Pa = E	[(e) ^a + pì(ei) ^a = [² + p ^a
Prop. 6-4-2	O°Tub=0 守恒海程 =)能量守恒.3维涉量守恒.角涉量守恒
	(conservation of energy, 3-momentum and angular momentum).
F: 惯烙9	ん生物 $\{t_1x_1y_1 \in t^2\}$ 令 $t^2 = \left(\frac{\partial}{\partial t}\right)^2$ $\partial_0 \xi^b = \partial_0 \left(\frac{\partial}{\partial t}\right)^b = 0$
(\$2)	$W^{a} = -\begin{bmatrix} a_{b} Z^{b} \\ \partial a W^{a} = -\partial a (T^{a}_{b} Z^{b}) = -Z^{b} \partial a T^{a}_{b} = -Z^{b} \partial^{a} T_{ab} = 0$ $\Rightarrow \partial a W^{a} = 0 = \partial_{\mu} W^{\mu} = \partial a W^{a} + \partial_{i} W^{i} = \partial_{i} U^{a} + \partial_{i} W^{i} = \partial_{i} U^{a} + \partial_{i} W^{i} = \partial_{i} U^{a} + \partial_{i} U^{i} = \partial_{i} U^{a} + \partial_{i} U^{a} + \partial_{i} U^{i} = \partial_{i} U^{a} + \partial_{i} U^{a}$
T	ab. 意缘性游程 光+节·j=0 [电特导恒] \(\overline{da} = -\int_s I.ds \)
	故 能量吃 光····································

\$65 理想流体动/学·	Perfect fluid dynamics
Def 1 理想流体 (perfect flu	id)是-种物质场、其能动张量可表为
Tab=MUaUb+p(V	$ab + VaVb) = (\mu + P)VaVb + PVab$
其中从户是函数(标量均)). Ua是矢量场,满足UaUz=-1 被秘为理想流体的说场
	流体存取作为考验 Zout (IR4, Pau)
违续价援中流体质区(体元):宏口	见上近似于一些,
——— 对粒分的微观高散结构 微	观上包含无数多微观粒子 U°的积分曲线 = 流体质鱼世界线
似统计平均处理后的模型(①相对于流体移移静止 U ^a =V(飞 ^a +u ^a)=V(U ^a +u ^a)
	V=-Z ^a Va=-V ^a Va=1 ⇒ 3速 μα=0
设瞬时观者(p,(s,)*) /	⇒ 瞬时静止肥粒 (rest observer).
4速(lo)a= 11p.	② 其他鸳鸯孙为他随流体-起运沙
	⇒瞬时逐动观者或失动观者 (conoung observer).
Tab 2ª 26 = Tab (e)a(e)b=	· Tas Ua Ub = (M+P) (-1)(-1) - P = M.
(e;)*(Ja = 0	出关的观查判得的能量衰度[固有能量密度]
Tab (4) (ej) = 0+ > 7ab (ei)	(ej) = p Sij (Pp)
	由共和观者测得的应力效量。
[给同性绪务].	② 犬有正的压力(压张) 而无切向应力
输同性:赫介参参(观者)	◎ T11=T22=T33= P + 共动观者3标架的任意性
冰袋何何性.	⇒ 压强是各向同性的 (isotropic)
$- T_{ab} Z^{a} (e_i)^b = - T_{ab} (e_o)^a (e_i)^b =$	$D = M_i$
	田芜沙观省测得的能流密度 (没有些传导)
U°是所有添体质与的4速构成	成的关量的(对码的微粒运沙做统计平均处理)
⇒ 共动参参 (静止参参系)是以	LU ^a 为观者亻速动的夸夸。

生族(dust): 医療力 P=0 的理想派体 $V^{\alpha} \partial_{\alpha} U^{\alpha} = 0$ $\mathcal{L}^{\alpha} \partial_{\alpha} U^{c} = 0$. $V^{\alpha} \partial_{\alpha} U_{c} = 0$ 生族松子的世界线为测地线(P = 0 粒子殺力).

非极可论近似: 惯性生禄参(t. x^{i} $\mathcal{L}^{\alpha} \partial_{\alpha} \mathcal{L}^{\alpha} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\beta} \partial_{\alpha} \partial$

多6.6 电动力学 Electrodynamics.

物质的 ①电磁切 ②全阵带电质三组成的连续流体(电磁切源并相互作用).

6.6.1 电弧切 (electromagnetic field). 和 4电流器度

3维语言 电场芒,磁场B ,背默军((R⁾,Sad).

4维语言 电磁动张量Fab [闰氏时室的2形对的 Fab=Fcab] 满皮Maxwell 剂程].

Def 1 瞬时观者 (p, Z^a)测得的电场 E^a和磁场 B^a由下式定义 (元)^a

Ea == Fab Zb Ba == = Fab Zb (Ea == Nab Eb Ba == Nab Bb).

で (IR³, Sa).

其中*Fab是Fab的对偶微分形式,也是2形成场。

4维风线包 ds=-dt+dx=dy+dz+

3组语言下的电动力学一利用惯性生标系(t.x.y,z) 在等时间(t=const.)上诱导的线记。维欧的

 $Z^{\alpha} = \left(\frac{3}{34}\right)^{\alpha} \quad E^{\alpha} \rightarrow \vec{E} \quad B^{\alpha} \rightarrow \vec{B}$

 $ds^2 = dx^2 + dy^2 + d\xi^2$.

Prop 6-6-1 Ea和 Ba是瞬时观者 (p, (e))a, (e))= Za的空间失量,且 $E_1 = F_{10}$ $E_2 = F_{20}$ $E_3 = F_{30}$ $B_1 = F_{23}$ $B_2 = F_{31}$ $B_3 = F_{12}$. Pf: Fab = Flab] ZaZb = Z(aZb) *Fab = *Frab] 空间大量. ⇒ EaZa=FabZbZa=0 BaZa==FabZbZa=0 BPEa和Ba是瞬时吹音(P·Za)的 Ei=Fa(ei)a=Fab Zb(ei)a=Fab (e)b(ei)a=Fio 故 E1=F10, E2=E20, E3=F30 Bi = Ba (ei)a = -* Fab Zb (ei)a = - 1 Eabod Fod (e) (ei)a and = 1 Eoicd Fod = 1 Eoijk Fik Eabed为与寝视りab追配的体元 正则3-基下分量为±1. 妖 B1= 1 (€013) F2+ €0132 F32) = F23 = F23 , 同理 B2=F3 , B3=F12 ⇒ Fab在观看的4桥架(e_M)^a的5量(F_M)_{4×4} = (0 -E₁ -E₂ -E₃ -E₃ -E₄ 描述电磁切需要6个独立量 (E₂ -B₃ 0 B₁ F₂ a -a. Prop b-b-2 设惯性务咒和咒由洛维感换 t= Y(t'+vx') x=Y(x'+vt') 相联系,则两省测同电磁动Fm的将值(Ē,Ē)和(Ē',Ē') 有虾菜条: Y=(1-V²)^{-1/2}. $E_1' = E_1 \qquad E_2' = Y(E_2 - VB_3) \qquad E_3' = Y(E_3 + VB_2)$ $B_1' = B_1$ $B_2' = Y(B_2 + VE_3)$ $B_2' = Y(B_3 - VE_2)$ Pf: 张量变换 Fab = 3xic 3xid Fcd. Prop. 6-6-3 误PS的两个瞬时观者 $(P,(P_A)^a)$ 和 $(P,(P_A)^a)$ 的政归-4标外有如下联系. $(e_2')^a = (e_3)^a = (e_3)^a = (e_3)^a + \%$ + 例两名测 一电磁动 所得值 $(\vec{E}_1 \vec{B}_2)$ 和 $(\vec{E}_1' \vec{B}')$ 也有 $(\vec{E}_1'$ 其中V=-(eo)a(eb)a. Pf: 遊慢性外况使其过户区的观看世界纹以(co)4为4速 → 兄和兄条关系为治疗裁变换.

选惯性外咒使其过产与的观者世界线以(eb)产为4速

⇒ 百百→百亩 秋叶愦愦成之.

EMF(M).	where is the site of			tive force, EMF).	
秋: NP 高福温图	級 {磁域類磁瓣	妙,铁岬	磁线产生电动	势 (M观트).	
EWF(N) S June Nack	磁域不墜磁体	转动,磁铁帧	的复数场力在	鉢体内部产生电功势(M	y水 <u>占</u>
一单极悠远 [旅	浅坐标款 (retating co	ordinate system	m)]		
其中 Fab.	在惯性分与非惯性外中	的分量关系们	3可使用 邑(B)	₹',₿'	
・帯电転りもの					
简化: 连续河的电行和	流→由烂幣	点(同屬吗)组成的尘埃		
电析为e,4速切为以a,1鳞印	it共动欢着为(p,U°)		Ų	1/12/1/	
阿部门时面体元体秋为V。	(国阵秧) 其帕N什	靶烻.	P	F 1 1/6 1	
共动观者测者的质学数额				$\frac{1}{V} = \frac{1}{V} \frac{1}{V_0} = \frac{1}{V_0}$	
	国有电节额度	Po≡ eyg	-般观名 P=	en=Ypo	
失沙观者	i测3电流宽度	$\hat{j}_o^a = 0$	- 版戏 ja:	= pua	
——电传额与电流额依	交赖于生标条	ua炒(þ,	路)的滩		
Defa 带电粒子流的4电流	速度(4-current de	妙)良处为	J* = p. U°	•	
Prop 6-6-4 Jag借購时欢	者(p, Za)做虾头	所: Ja	= p Za + ja		
Pf: Ja = P. V(Za+	-ua)= pZa+pua=p	Za+ja.			
即 瞬时观看测得的电荷	荿戻P私3电流発度ja	分别走	P=-ZaJa		
4电流聚度丁°的时间分	童丁°和空间投影的°	b Jb	ji= Ji		
电荷的连续性活程 [电符字图	$\frac{\partial f}{\partial t} + \vec{p} \cdot \vec{j} = 0$	(-) 0=	= 20Ta = 20To	+9171	
6.6.2 麦萸伟茄2.					
	1				

3约语钟 惯性性桥系下 预斯特拉的微场形式 (几约高斯制) C=4 47.60=1. $M=4\pi$ $\vec{\nabla}\cdot\vec{E}=4\pi$ \vec{p} $\vec{\nabla}\times\vec{E}=-\frac{2}{24}$ $\vec{\nabla}\cdot\vec{B}=0$ $\vec{\nabla}\times\vec{B}=4\pi\vec{J}+\frac{2\vec{E}}{24}$

4组语言下的麸斯韦劢 { ≥aFab=-4πJb.
4维语言的
Prop 6-6-5 对任-惯性条(t.x.y/运)由4维语言下的频斯标对外导出
电符字恒律 2010年0
3维颜斯市社、京==和ρ 苋x==- == 〒·B= ο 苋x==4πj+==) λ εαλι
$Pf: \partial^b J_b = -(4\pi)^{-1} \partial^b \partial^a F_{ab} = -(4\pi)^{-1} \partial^{(b} \partial^{a)} F_{[ab]} = 0 \qquad (1R^4, 1/4)$
Sub所选惯性系的等+面上的(济宁)欧氏度规
Sa和 da为与Sab和 Nab 造配的导数算符,会Za=(杂)a ll sa ca
空间失量 Ea 满足E。= D oa Ea = (dxi) a (xxi) coi Ei = ôi Ei = zei da Ea = 20Eo + 2i Ei = zei
$\vec{\nabla} \cdot \vec{E} = \hat{\beta}^a E_a = \frac{\partial E_i}{\partial x^i} = \partial^a E_a = \partial^a (F_{ab} Z^b) = Z^b (-4\pi J_b) = 4\pi \rho \qquad \rho = -Z^b J_b.$
(→×己)c= Éab c ĴaEb Ĉabc是∑t上与∫ab适配的体元,Eabed是与Vab适配的体元
ða Eo = (dxi)a(dxi)b ĝi Ej = (dxi)a(dxi)b di Ej
$\partial a E_b = (\partial x^{\mu})_a (\partial x^{\bar{j}})_b \partial_{\mu} E_{\bar{j}} = (\partial x^0)_a (\partial x^{\bar{j}})_b \partial_0 E_{\bar{j}} + (\partial x^1)_a (\partial x^{\bar{j}})_b \partial_1 E_{\bar{j}}$
将其拨勤至ΣL上. (dx°)α模勤为燮 (dx²)α模勤为自身.
had hoe date = (dxi)a(dxj)b ditj = Ĵato + dato.
Éabc为宜司张董 had ho Éabc = Édec
(VxE)c= Earchadhbe dle= Edecdle= Earcdate.
= $\hat{\xi}^{ab}_{c} \partial a (F_{be} Z^{e}) = Z^{e} \hat{\xi}^{ab}_{c} \partial a F_{be}$. $0 = \partial a F_{be} + \partial e F_{ab} + \partial b F_{ca}$
= Ze Eabc (-1) (de Fab + db Fea)
= Ze ĝab (-1) (defab + db Fea) = -Ze ĝab defab - ĝba dafeb Ze) = ĝab da (fbe Ze) = (vxĒ)c.
∠(▽×Ē)c = - Ze ĝab c de Fab

= - Ze Zd Edobc de Fab = - Ze de (Edobc Fab Zd) = -2 Ze de (*Fac Zd) = -2 Ze de be

Edcab *Fdc= 1 Edcab Fab

(成已);=(动)°(成元)c=-己合Bi=-造即 如花=-强. \$P\$耐甜自证. 6.6.3 4533255. (lorentz force). 带晚色对电磁场的影响由表现扩充程反映。 带电板巨受到电磁场的作用力一治在药力 f=q(E+ūxB) 包办板贮药 以为质色孩 ⇒ 带电板互在电磁场中的运动方程 df = e(Ê+ūxB). 应具有洛龟兹加变性. Prop b-b-b 设版学的电荷为 9 , 4速为 U*, 4动量为 P*, 则电磁场 Fab 对 已的 4为 (4治金数). $F^a = q F^a{}_b U^b$ ($F^a{}_b = V^{ac} F_{cb}$). q conserved + invariant 因而只受电磁力的质点的千维运动方程为 QFabUb=UbdbPa Pf· P为带电板巨世界线上任-트 ,(P,Z^*)为任-1瞩时观看,正页13-4标架为{(G,)*) 其中(G)*=Z* 应证 Fa对该瞬时观看的场量满足 Fi=yfi Fo=yf-u 其ty=-zaUa. fi是3维翰子的第汤量, $\overline{U}=U^a$ 是质 \overline{U} 相对 \overline{T} (P,Z^a)的 \overline{Z} . Fa= Y & Fab (2b+Ub) = Y ((Ea+ Fab Ub) -> Fa= Y ((Ea+ Fab Ub) ① 空间分量 Fi = Yq (Ei+Fij W) fi = q(Ei+(lixi);). T证 (uxB);=Fjui. (LuB) c = \hat{\xi}^{ab}_c UaBb = \hat{\xi}^{ab}_c Ua(-* \text{Find } \text{Z}^d) = -\hat{\xi}^{ab}_c Ua(\frac{1}{2} \text{F}^{ef} \text{Eefbd } \text{Z}^d). = - 1, Eabcha Fet Eetbod Zd = - 1 2 & Egabcha Fet Eetbod Zd. =- \frac{1}{2} U^a Fet Z& Zd Egabe & etbd = \text{Ebgac & bdef} = \text{(4-1)! 1! 8[8] } =- = ua za Zd Fef (-3!) 5 tase ast = = +3 Na Za Z [d Fef] 8 d 8 a 8 fc = ua za [Zafef + Zf Fde + Zeffd] sdg seastc. = Na Zg[ZgFac+ZcFga+ZaFcg] Ua Za=0 到量 = - NaFac + Zcz? NaFga

空风罐+时间分量-.时间分量=空闪量.

(uxB)c=Fcaua-Zcua Fag 29 Ea.

Zc(ei) =0.

 $(\vec{u} \times \vec{B})_i = (\vec{u} \times \vec{B})_c (e_i)^c = [F_{cu}u^a - Z_cu^a E_a](e_i)^c = F_{ij} U^j$

②时间量 FO=YF.U

 $(e^{o})aE^{a}=0$ $(e^{o})a=-(e_{o})^{a}$. $F_{o_{i}}=-E_{i}$

Fo = Fa (eo)a = Y g (eo)a (Ea+Fab Nb) = -Yg (eo)a Fabub = -Yg Foili

= YQE; ω = YQ[E; + $(\vec{a} \times \vec{b})_i] \Delta \hat{u} = Yf_i \omega = Y \vec{f} \cdot \vec{d}$

(JxB)·J=0

Q.E.D.

6.6.4 电磁场的能动验量.

电磁动的能动线 Tab = 1/4 (Fac Fb c - 4 lab Fcd Fcd) 其中Fabb电磁均张量。

对初移成 Tob= foc (FacFbc+*Fac*Fbc).

*Foo为Foo的对偶形式

选定任惯性条例和能量密度 Too= 氙(E²+B²).

*Fbc = nac *Fba

能溶度 Wi = -Tio= 4元(ExB)i

1,ab (e) (ei) = 0

Ja=0(无顶蝇磁场) 3ª Tab=0 服从能量守恒. 矽量守恒. 陶助量守恒.

Ja≠o(含顆地弧t劲杵非是孤立棒瓢) →aTab≠o

→电磁场5带电粒子的总能动张量满及 JaTabl=0.

6.6.5 电弧4势区某运动方程.电弧波.

Fab = (dA)ab = 2 2[aAb] = 2aAb - 2bAa. 对论报单极子(monopole).

Def 3 满足F=dA的Aa叫电磁场F和的4势(4-potential) 会配带挖去块.

各的和信·性,A是上的干势,从是IRf上任意C2的数

d(dx)=0 Q: ==-=pp+==, B===x=是程 4第5Feb

 \rightarrow $\tilde{A} = A + d\chi$ $d\tilde{A} = dA = F$ 改 \tilde{A} 也是 \tilde{E} \tilde{E}

规范自由性 (gauge freedom)

→ 念兹规范条件(Lorenz gauge condition))2Aa=0

-院存在Aa 使治化無规范务件满足: $\widetilde{\underline{A}} = \underline{A} + d\mathcal{X}$ 全 $\widetilde{A}_a = A_a + J_a \mathcal{X}$ 使 $J^a \widetilde{A}_a = 0$

 $\partial^{\alpha}\widetilde{A}_{\alpha} = \partial^{\alpha}A_{\alpha} + \partial^{\alpha}\partial_{\alpha}X = 0$ \Rightarrow $\partial^{\alpha}\partial_{\alpha}X = -\partial^{\alpha}A_{\alpha}$.

 $\partial^{2} \partial_{a} \chi = \eta^{ab} \partial_{b} \partial_{a} \chi = -\frac{\partial^{2} \chi}{\partial t^{2}} + \frac{\partial^{2} \chi}{\partial \chi^{2}} + \frac{\partial^{2} \chi}{\partial z^{2}} + \frac{\partial^{2} \chi}{\partial z^{2}} = -\partial^{a} A_{a}.$ (非於決功方程).

%的非零解存在且很多 ョ 今后默认选取满失浴论乱规范条件的4势.

在任惯性来(tixi)中对Aa做3+1分解 Aa=-中(dt)a+aa.

中和 a a 分别是电磁场 上的标格与3 矢势

· 4势下的轰兢斯韦方程与电弧波.

表 新 节 $\delta^{a}F_{ab} = -4\pi J_{b}$ $\iff \delta^{a}F = 4\pi J^{*}$ (证明见 57.2 造家). $\partial_{\Gamma a}F_{bc} = 0$ $\iff d F = 0$ (F = dA 自动满走.

$$\partial raF_{bc7} = 0 \iff dF = 0$$

 $\frac{1}{2\pi f_{bc}} = 0 \iff dF = 0$ $\frac{F}{2\pi f_{bc}} = \frac{1}{2\pi f_{bc}} = 0 \iff dF = 0$ $\frac{1}{2\pi f_{bc}} = \frac{1}{2\pi f_{bc}} = 0 \iff \frac{1}{2\pi f_$

(=) 3维语言下关于标势与矢势的达朗伯方程 (d'Alembert equation)

 $\Box^{\nu}\phi \equiv \vec{\nabla}^{2}\phi - \frac{1}{c^{2}}\frac{\partial^{2}\phi}{\partial t^{2}} = -4\pi\rho.$

 $\vec{\Gamma} \vec{A} = \vec{\nabla} \vec{a} - \frac{1}{C} \frac{\partial^2 \vec{a}}{\partial t} = -4\pi \vec{j}$

无原电弧切 Ju=0: 2020Ab=0 激功方程.

形如 Ab = Cb Cos B B为麻造场、杨为相位(phase). (polarization vector).

Cb为非零的常乐量功 (2aCb=0), 粉分偏振乐量

 $\partial^{a}\partial_{a}\left(-C_{b}\cos\theta\right)=C_{b}\partial^{a}\left(\sin\theta\partial_{a}\theta\right)=-C_{b}\left[\sin\theta\partial^{a}\partial_{a}\theta+\cos\theta\left(\partial^{a}\theta\right)\partial_{a}\theta\right]=0$ 代为移

(2a目)(2a目)=0 和 2a2a日=0 为波功活程 2a2aAb=0解.

全 Ka = Jab $\rightarrow 0 = \partial b (k^a k_a) = 2k^a \partial b k_a = 2k^a \partial b (\partial a \theta) = 2k^a \partial a \partial b \theta = 2k^a \partial a k b$ K^aJaK^b=0 测地线方程. θ 为家标量场 \rightarrow 等の面 $\mathcal{G}=\{pe|R^4\mid \theta_p=C\}.$ (C为常数) \mathcal{G} β $|R^4$ 中的起曲面. $O(K^a = 3^a \theta$ 是超曲面 Y 上的法矢切 $O(K^a = 3^a \theta)$ 是类光起曲面 . [等相面]. ③ Ka的积分曲线是躺在Y上的类别地线· Ka在任-惯性坐标系(t.xi)下用对偶坐标基矢展开 (dt)a=Jat=Ka=Ka(dxm)a. Ka为常庆童场→Ku为常数. $d\theta = K_{\mu} dx^{\mu}$ · 秋ラ $\theta = K_{\mu} x^{\mu} + \theta_{0}$ (学数) = $K_{0} x^{0} + K_{1} x^{1}$ $K^{\alpha}(t_{0}^{\alpha})^{3+1}$ $K^{\alpha}=K^{\mu}(\frac{\partial}{\partial x^{\alpha}})^{\alpha}=K^{\alpha}(\frac{\partial}{\partial x^{\alpha}})^{\alpha}+K^{\alpha}(\frac{\partial}{\partial x^{\alpha}})^{\alpha}=\omega(\frac{\partial}{\partial x})^{\alpha}+K^{\alpha}$ 期 $k^{i}-K^{i}$ $K_0 = N_{00}K^0 = -W$ $K_1 = N_{11}K^1 = N_{11}k^1 = k_1$ 相位 $\theta = -\omega t + k_i \chi^i$ 波碱解. $A_b = C_b \cos(\omega t - k_i \chi^i)$. $K^a = \omega (\frac{1}{24})^a + k^a b + 4$ 独然量 角频率、3维波量 — 单色平面电磁波 (monochromatic plane wave). [••惟依含个自频率,率面档波阵面是轴]. 复注在-维宁阿中标题 f(t,x)=Fcos(wt-kx) $f(t,x_0) = F(0s(wt-k\pi))$. wto-kx =0 $f(t_0,x) = F(05)(wt_0-kx)$ t1=t0+4. wto+wat- $kx_1=0$ f(t,x)= Fcos(wto-kx+wat) 零相位面 %→%发生传播 [港的传播]. 相位传播速度 L相速] = $\frac{x_2 \cdot x_1}{t_1 - t_2} = \frac{\omega}{k}$ 三维空间中标量表 f(t,xi)=fcos(wt-kixi). 激阵面:在某一时刻>约坚问中等相至组成的面(等o面). 取切时刻相位 Bo=wto-kixi 等的面方程 kixi=o 为啊.→来被

证明 μου μου βου - wto+ kiχi 法条y 2a θo = (dθo)a = ki(dxi)a = ka.→ k^a为法y. 慢性生标系(t.xi) 工。为七时刻的同时面,工为七时刻的同时面 分为等相面(4维试的时空中的起曲面). (2维). So=YNIXo 是同时面Io上等相互能一切时刻的一张淡阵面 SI=YNZI 是澳阵面 So 沿波的传播和何在t-如时间后到达的新酒 ⇒ y为波阵面 So的世界面,描述波阵面随时间的演化(波的修缮). 根建=4=1=3 港阿勒传播选率为光速 (Y为类光起曲面) 类光乐量Ka在同时面上的投影Ka垂直于波阵面S。 Ka积分曲线的投影—光线· 光子的世界线 [类光测地线]. Ka = 2a B 4.35K°由单种面ッ次定,是绝对的 $K^{\alpha} = \omega(\frac{1}{6})^{\alpha} + k^{\alpha}$ 角频率 $\omega = 3$ 波尔 取决于所选惯性系, 是相对的. 任-时空中的 K 可借该近任-瞬时吹者 (P. 20)分解 Ka=wZa+ka $k^{\alpha}k_{\alpha} = (\omega Z^{\alpha} + k^{\alpha})(\omega Z_{\alpha} + k_{\alpha}) = -\omega^{2} + k^{2} = 0$ $\Rightarrow \omega^{2} = k_{\alpha}k^{\alpha} = k^{2}$ · 凡汀光学(geometric optics). [末光线代替 港沙概念 描述单色和电磁换的方法. [光的粒3性] AL= CLOSO=CLOS(wt-kixi). (模型语言). 条件: GBK=200在到空为影量. C为特征k良 {尺度小于C的时空,Cosθ变化许多同期:可亚似处理 慢变插幅 快暖相图子 尺度大于 L的时望 Cb 或 Ke 更化明显。 局战笔平面表:电磁波存在的时空区域从满足空间尺度很大于波长入= 元 (ω=- Z*ka) [光捷]. 量弛防学 ______ 经典助防务.

必治粒二新性

(视为普遍籽>但M=0)

同战单色平面电磁波=一大群光多组成的光流,它们有近似相同的Ka和Ca

定义光子的4功量 Pa Pa:= fika.

光子世界线:信射多数β满匙 Pa=(盏)a 的类状测地线·

3+1分解

P^a=EZ^a+p^a E为影能量 P^a为影子3动量。

$$p^a = h(w z^a + k^a)$$
 $f = hw$ $p^a = h k^a$

$$K^{\alpha}K_{\alpha}=0\Rightarrow P^{\alpha}P_{\alpha}=0=\left(E\xi^{\alpha}+p^{\alpha}\right)\left(E\xi_{\alpha}+p_{\alpha}\right)=-E^{2}+p^{2}=0\Rightarrow E^{2}=p^{\alpha}P_{\alpha}=p^{2}$$

6.6.6 光妝的多普勒效应.

观者和光가有任邑运动状态,4速餄为Uª和Vª·

光源在P트发光被观看在P트收到 .光34凝失为Ka

统时 V^a测得的角频率 ω=(-(°Va)|_p 接收时以《测得的角频率 W'= (-KaUa) | 1.

观看.

平直时空有绝对平移 $U^{\alpha}|_{\mathfrak{q}}, K^{\alpha}|_{\mathfrak{q}} \rightarrow U^{\alpha}|_{\mathfrak{p}}. K^{\alpha}|_{\mathfrak{p}}$

$$\omega' = (-K^a \text{Na})|_{\P_{-}} = (-K^a \text{Na})|_{P_{-}} = -(\omega V^a + K^a) \gamma (V_a + u_a) = \gamma (\omega - K^a \text{Na})$$

= Y(w-kucso)=Yw(1-ucso)

多普勒效应 ω'=γω(|-μωσθ) γ=-Valla.

① θ=0 观指与影源相貨です ω=Yω(1-μ)=ω 1-μ = ω√1-μ < ω· 频率减小, 涨增大 [红移].

② β=ル 观着与光源相例的介 ω=Yω(1+ル)=ω 1+ω =ω 1+ω >ω 频率增大, 张城小 [蓝移].

③ Θ=至 观者相对于光鼎横向移边 ω'=Yω 横向绝勤效应.

第七章 广义相对论基础 Chapter 7 Foundations of General Relativity
多7.1 引力与即室几何 Gravity and Spacetime Geometry
· 分找相对:心要求物理定律的数学表达成具压治仑菰*协变性 (而非伽利略协要性)
⊙荚斯韦电弧理论 ②牛顿运动院羊 → 相yT范性力学 P=版m以=m以(1-u²) ^{-况} ·
①牛椒石有引力理论· F= GMm F= mA 31/100维 A= GM F3 F= Vp
取场运业为漫坊面 $\phi = -\int_{r}^{\infty} \vec{F} d\vec{r} = -\frac{GM}{r}$
质量通量 = €Ã·d3 = 6M 4xr2 = 4xGM = 4xG ∭v pdV.
$\Rightarrow \nabla \cdot \vec{A} = \nabla \cdot (\nabla \phi) = 4\pi G \rho$
1.3/b势p和质量熔度ℓ的关系: ブΦ=4πρ 泊松>社 (G=1).
—— 无洛仑兹协变性
2. 方程解 φ(Fit)= ∭V P(Fit) dV' — 引力场的作用瞬时传播(起版)
引力理论改造的困难:
① 中帆石有310灾律类比库仓灾律,但不在"斧"差别"
电荷存正纸,同性相收异性相片/质量只正个,同性只收不斤.
引力坳蛮化产生的引力决以光速传播,带走的能量是负的. 且修改理论存在问题
爷泳在辐射引力澳时自身能量增加,辐射進度增大,获得更能量
因在狭义相对论框架内建立合适的31b理论存在自身问题
n 独立于狭义相对论的引力理论——广义相对论
重图 泰 囗 引力的"普运性"(universality)
*马赫顶理、物件的运动并非绝对,而是相对于宇宙中集色物质的相对运动
在非惯性养中 物体的单惯性分是一种引力表现,是宇宙中其它物质对该物体的总例
物体的惯性不是物体自身属性,而是导宜中英它物质作用的结果.

中软引加的普通性:		育	地切无普逊	±
19 任行物体在引力场中者	P(多)力	ľ	中性物体在	静电吻怀受静电
2°任何两个成点在引力场		5引加速度.2°	静砌遊	或= <u>₽</u> 昆依松于药
《陈虹的荷:物质含量				.引力质量mg].
灰 <u>的</u> "废"、物质惯例	的鲑, 凝钝	的作用下出现的力	谜底大小 [惯性质量mil
引力加速度 R=ma	夏 多为该运的引	力场强,		
• & 等 敬 原理 M q = M	工. [存在更深刻	的理论一广义相对证	它, 排导出MG	_ = M]
→ 初始位置和初始逃算	相同的、特别力外不	受力的任何物存在	引加加斯	沙羚• 致.
亳科性的集体行为	哦~ 引炸整/	[时空影的内禀性	焱 .	
獲测 € 31分781晚时 → 平	车里.			(IR ⁴ 1 Nab).
引力不可為晚→賈	迪时空 動情以	ルキナキシリカかり	沟物质炉.	(M4. gab)
4维语言 引力效应体现			假设	1
降别为外不受力的恢复—	— 自由险			
假定多曲时空中自由的	些的世界线是该时	空的测地线	假设	2.
引力通过改变此时	呼的测地线来次	度自峨色的 运动	it	
Ma=M工作为逻辑结论	锝 :			
设两个自由质色的 初始	运置和初始违 复相同	1.即包门的世界组	找相交且在家	妙切外相等.
则两自由恢复在交互合	的测地线完全重点.			
Pf: "一些一矢定一测"	0.自城兵濒地	戌	7.343	叶地关
	②两族巨出发巨5	该互切失党组	引見全事	
H	③测地线的砂	馀件唯一确定.	J 🐧	- Im -

广义相对论的基本假设:

発花板板场

(a) 3维宝间引力效应传现于4维时空几何的弯曲. M为4维流通流形 gab为M上某个非平直的

引力可忽略时 背景时空为十维河代空间 (IR+, Vab); 引力不可忽略时 背景时空是弯曲的 (M+, Jab)

(b) 自由仮三除別力外受到 Fa=0 返站方程 为 0=UbVbPa=mUbVbUa 自由质色的世界线是所在弯曲时空(M.Ja)的测地线 UbVbUa=0 Vb为过面Ugab的导数算符.

(c) 时星的弯曲情况受物质历布的影响,其间的关系由爱因斯坦活移描述 $G_{ab}=T_{ab}$ 广义相对论力学 的弱吻低速近似为牛顿力学(仅计算结果近似-致)

§7.2 弯曲时空中的物理定律 Physical Laws in Curved Spacetime. 果剂性活和实验室中引加分太弱 → 无法通过观察或实验 13纳总结。

根据基本原则用假设方法得到定律 → 由指导的结论15家验观测结果一致性经证正确性

· 广义协变性原理 (principle of general covariance): [Wald(1984) P.57, 68] 只有时空寒规及其派生量才允许以背影飞行量的身份出现,在物理定律的表达式中.

爱因斯坦:物理定律的数学表达式在任意坐标变换下形式不变

♦ 所有坐桥条 (惯性外与非惯性条) 平权

背景: 时空149 (M, gab)

物理设存 ← { 时空度规 gab ← → 如导数算符 Va, 黎曼由率 Pabed ··· [时型时量].
代表物理各体的物理量,如于设量 Pa和电磁场张量 Fab [动力学量].

排除人为指定因素与生标系依赖的量(如 da).

非抽象指标表述: 物理执律能表为致量方程,即具有广义协变性,

例: (1.1)型鉄量 T=S {T*v=S*v T*v=S*v

含纸茶的写《无广义】加重性 {抽象描标表述: Pau是具有坐标系依赖的张量. 非抽象描标题: Pau不满足张量定义. 弯曲时空物理规律的[职]:(不能准-确定) +物理學求+美學學: 10)满处广灯板剪性原理 (b) 在时辖板9和等于1到10度规Vab时,应能回到狭X相对论的相应定律。 例如:1庚三和光子的世界线分别是类时曲线和类光曲线 [成区从定亚光速;光速不变原理] 质色的国有时间等于它的世界线膜. 质色的4速U°为世界线的单位切失,4动量 Pa:=mUa,相对于(p,2°)能量 E:=-PaZ 电磁场由2形成场Fab描述 狭义相对论(稻时里)→广义相对论(弯曲时里): 最小替换法则 Nab → Jab da → Va . ※2門內高阶等數项存在问题 例如:庚草的子加连 A^a:=Ub>bU^a → A^a:=U^b∇bU^a 45 Fa:= Ub 36 pa → Fa:= Ub 1/6 pa. 电磁动中质鱼运沙产者主. 2下96以b=UbVbPa. 电磁场能站铁量. Tub= 标(Fac Fbc-并fab Fcd Fcd) 申磁切运动际 Va Fab = -4x Jb V[a Fbc] = 0 \ dF = 0. 南域队A ⇒ F=dA Fab= 2 Vra Ab7 = VaAb- VbAa. 电磁子势表示表例表示: -4元Jb= Va(VaAb-VbAa)= VaVaAb-VaVbAa SR: -TaVbAa=- 2a2bAa=- 2b2aAa 洛仑孤規 2aAa=0 GR: (VaVb-VbVa)Aa = - RabdaAd = RbdAd = RbdAd. -VaVbAa = - VbVaAa-RbdAd = - RbdAd => Va Va Ab - RbaAd = -4元Jb. 电符号恒律 VaJa=0

· 曼曲时空的表现标 标组	(外徵污芨述)	d*F=425	dF=i
3 1910 7 5 10 3 10 91 17 10 13 35	(2) 12X7 42()	U 1-41-1	ur=

§7.3 费米移动与无自转观者· Fermi transport and non-rotating observers

· 珀特观者。

转动概念与判断方法:

\$P\$\$\$P\$《回转仪飞轮的自转轴与判定对象之间的潮关改变化·

4维语言: 双者世界线为 G(t), 空山矢量あX*5 W*万別代表四段(独与列象 W*5 X*在 ら P;= G(ti) 重に而在らP;= G(ti) 不重を.

猪想秧咖啡吃物Xª

O Xa 是GLCI上的科外量物

一个正确、 $P_i = G(T_i)$ 的空间矢量 $X^{\alpha}|_{P_i}$ 次的平移矢量场一般不是 $G(T_i)$ 上的空间矢量场

 $Z^{b}\nabla_{b}(X^{a}Z_{a}) = Z^{b}(\nabla_{b}X^{a})Z_{a} + Z^{b}X^{a}\nabla_{b}Z_{a} = X^{a}A_{a}$ Aaka(1)65464

G(t)不是测地线(A*+0)且X*与A*不正交(X*A*+0) 则 Z*Db(X*Z*)=0

即XªZa治G(t)不是常数,不均能在G(t)上外处为零 => Xª不-定是空间矢量场

② X°做费米移动时保证X°空间性 [G(c)为测地线,费米移动=平移].

Xa 治Gct)平移 () Zb To Xa = 0

Xa治G四点米移动

Def 1 没Gに)是时室(M·gab)中的类时线(で)国际), る(トル)代表治Gに)的光滑(トル)型 強量物集も、映射 是: 活(トル)→ 活(トル) 私めGに)上的费米-沃克号数算符

苦它满足如下条件:

```
(a) 具有线性性 (b) 满肢菜种尼茨律 (0) 与缩并可交换顺序
(d) FE = #
                                          ¥f € $ G(0,0).
(e) DFVA = DVA + (Aazb-ZaAb) Vb
                                    VVae fa (1.0).
 斯尼·金=(是)°代表G(I)的4速, A°= 26万2°代表G(I)的4加速
 DVA = Zb 76 VA 是 Va 治曲线G(t) 做 协变等数
 =) 是对任意独立的作用。
Prop. 7-3-1 费特数的性质
い若G(て)为测地线(Aa=o) 则 DFva = Dva dt = Dva
ry DFZa =0 Za 沿Gu) 景移
沙荒wa是GCT/上的空间处场 刚 AFWa = hab Dwb [空间失量场的费料数仍经间缝边]
   其中hab=gab+ZaZb,hab=gachcb是GCT)上的校影映的
4) D=300 => V1, Ub 6 9G(1,0)
    DF(gab Va Ub) = gab Va DFUb + gab Ub DFVa at.
                                           5026=1 Ab76=0.
Pf:山洲地线A°=0 易证.
    17) DFZA = DZA + (AaZb - ZaAb) Z1 = Zb VbZa - Aa = 0.
   3) 晚
   41. = V_a \frac{P_F v^a}{d\tau} + U_a \frac{P_F v^a}{d\tau} = V_a \left( \frac{D v^a}{d\tau} + (A^a z^b - z^a A^b) U_b \right) + U_a \left( \frac{D v^a}{d\tau} + (A^a z^b - z^a A^b) V_b \right)
           = \frac{D(V_a U^a)}{d\tau} + V_{(a} U_{b)} A^{[a} z^{b]} \cdot 2 \cdot 2 \cdot \frac{2A^{[a} z^{b]}}{d\tau} = \frac{D(V_a U^a)}{d\tau} = \frac{D}{d\tau} (g_{ab} V^a U^b)
      EP D(gabVaub) = DF(JabVaub) = gabVa DFUB + gab Nb DFVa AT.
Defa 矢量物以布勒治GCCD费米-沃克物的(Fermi-Walker transported).
               も DFVa/dt=0
```

Note: 以 沿测地线的费移就是P移
的 G(C)的4速2°总是沿G(C)费移的.
$D_F V^a / d\tau = 0 = D_F U^a / d\tau$ 即 V^a , u^a 都治安(工)费转 =) $\frac{D_F (g_{ab} V^a u^b)}{d\tau} = \frac{D (g_{ab} V^a u^b)}{d\tau}$
"费移保内积"
Prop 7-3-2 PEGB vae Vp 決定唯一的治G(I) 费務的矢量的· G(I)·
Note: i) Va, Za 沿G(I) 费務+费格件内积
⇒空间线量、MeVp 决键的沿GCI费移的线量场 Ma
乗りて ^a 垂直,故 va为空间矢量场
v) 与peg的-1正则3-4柄架(其第零基矢为Zalp) 的每-基矢(e;)**决定-1治G(t)
费移的兴量物,且由费務保内积,可知,4个矢量物在线上每点正页归一.
P些的-个正到3-4标架决定3G(t)上唯-的正交归-费移4标架场
费務的物理意义:
世界线GCC)上的空间矢量场wa 无空间转动 <>> wa 沿线费移 DF wa/dz = O
wa 有空间转炉←⇒ wa 滥线非费移。
(G(t)).
→ X ⁴ 湍线震移 回转仪轴 = 沿回转仪性界线费移的空间矢量场
空间转动: Co 转动
四件运动 = 平动+转动 () 平动 (a) a') G'
网络水包的Cixxx至位的Cix w(t)= oa dw(t) +0
起己0万变的矢量 10以初为转动的,若存在发量 10以 使 dv dt = 10(4) × 10(4)
$k \vec{D}(\theta)$. $ \vec{D}(\theta) = \vec{D}(\theta) = \vec{D}(\theta) $
以 以 对
R=Wsing

	性の次的次次。
空间转动保务量长度 <u>d(vi·vi)</u> = 2 vi·dvi = 2 vi·(vi·vi) = 0	(Up, hab)
村子狭x相对论: 选用笛卡劢系(t,xi). dui(t) = €jk ωs w	* <u>/⊅→/</u> ₩
对G((7)上住-乡Þ,同时面Wp的诱导连舰 hab	(1R4, 200).
得制角速度工形式 Wa = hab Wb	
Wa在Wp上的 対偶的が対 Dab = (* W) ab = Wc Ecab 粉め角を	岐 2形式
Eijkwiwk = - Eijkwkwi = -Sijwi RP dwith = -sijwj	せきて(慢性观省)
es//成 正列3-3标柴+为 {(e))a} wa//(ex)a w1=w2=0 w3=	
アW ^A (=) Ω23=S231=0 Ω12+0 即W ^A 在1~2 面内转动	
w·在行面转动是推 Cab 非零净量为 Cij和 Cji	
⇒ 住着时空任青炭时线上任青矢量场的"时空转动"	
Def3 设G(I)是时空(M,gab)中任-观者的世界线,V4是线上的矢量场	
	•
即为 Va 经受以介础为用还度的时空转动(Va的时空转动角速度2秒	就是(Cab)
先 Dva = 0 別 va 无断空转动 (spacetime rotation)	
Note: G滿失 with = With × With 时, 3维矢量 Z滿足 X×W=0 (X	= β w)
则 $\vec{\omega}' = \vec{\omega} + \vec{\lambda}$ 也满足 $\vec{\omega} = \vec{\omega}'(t) \times \vec{w}(t)$. 绕自身的	9任喜转动
类似, Ω的满足 $\frac{DV^a}{d\tau} = -\Omega^{ab}V_b$ 时, 2形式Λab满失ΛabVb=0	
Ri Nob = Stab+ Nab 也為此 Dva = - Diab Vb nobb	枕苑自由度!
Va无时空转动 ⇔ Aab=O [相差个规范变换 Aab'=Sab	+ Nab (Nab Vb = 0)]
Pmp7-7-3 设Gα)上的矢量切 να, να 经受相间的时至轻砂ΩαЬ, ρ	yvaua在G(z)上为常
O NIA DIA (-al) a al)	FAIT

Prop 7-7-3 设 G(C)上的矢量+切 V^a , V^a 经受相间的时空转动 Ω b,则 V^a lua 在G(z)上为常数 $Pf \cdot \frac{D}{\partial x}(V^a U_a) = V^a \frac{DU^a}{\partial x} + U^a \frac{\partial V^a}{\partial x} = V^a (-\Omega^{ab} U_b) + U^a (-\Omega^{ab} V_b) = -2 \Omega^{ab} V_{(a} U_{b)} = 0$ 时空转动保持矢量内积与矢量收费 /仅有优度沉G(C)不变的矢量+切 V^a 打角能经受时空转动

GID的性Za沿GID東移 DFZ/dI=O=DZa+(AaZb-ZAb)Zb DEa = -2A[a Zb] Zb = -(AanZb) Zb. ↔ DEa =- Jab Zb. Prop 7-3-4 GIT)的4速区a的时空转动角速度2形式为Gab=AaAZb=AaZb-ZaAb 斯Aa是GCT)的4加速 (boast) 0当观名为惯性观者,G Γ Γ)为测地线 A^{α} =O,4速 Z^{α} 无时空转动 2 | 2 | Za| p / Za(t) ® 乳ab=Aa∧Zb→ 乳ab代表的时里转边发生在Za~Aa面内. 在{(6)9=29,(6)9}正列-4标朱下 空间市量 Ĩij=O Ĩoi +O — 伪转动 (pseudo rotation) 老.你的懂 Sia - (纯)宝山转动 ③世界线G(t)对测地线的偏离[反映为4加速A*+0] 是 Z*丝段伪转动的根本原因 . $A^{\alpha} = Z^{b} \nabla_{b} Z^{\alpha} \rightarrow A^{\alpha}|_{P} = \lim_{\Delta T \to 0} \frac{1}{\Delta T} \left(\hat{Z}^{\alpha}|_{P} - Z^{\alpha}|_{P} \right).$ Sub和徐必不晚的 Sub得到线的转动. Rop 7-3-5 谈Sab是Gcc)的任意Za经历的伪转动,只由是Gcc)上的空间实量场waffs毁的 的空转动,则 Ĵab = Sab - Ĵab 是纯空间转动 Ĵai = 0 (至多相差一个规范变换) Prop 7-3-6. 宝间矢量场W^a 无宝间转动 介ab=0 ← V^a 依赖米转动 DEW^a=0 Pf: PFWa = DWa + (Aa Zb - ZaAb) Wb. = - SabWb + Dab Wb = - Sab Wb. Ĵab=0 + 规范自由 ← → wa 费移. 充由+0 则 Wa有空间转动. $\hat{\Omega}_{ab} = \omega^c \mathcal{E}_{cab} =) \frac{D_F w^a}{d\tau} = -\mathcal{E}_{bc}^q w^b \omega^c$ Ĵω的对偶形ζ(peG的3维星间中)ω° 全Earch为与J加适配的体记 Ebcd=ZaEabcd. gab Town = gab [DWb + (Ab Zc-ZbAc) We] = gab [-(Dbc+ Tbc) We + Tbc We] Eabed Zb Wowd. The = -gas & bed Wa Wc.

= - Each wd Wc. = - Zb Ebacd wd Wc.

=> fab DEWB = Eabout ZD WC Wd

 W_{a} 为室歌量场 W^{a} 的空间转动角速度,对应 $\hat{\Omega}_{ab}$ = W^{c} Ecob

非贵務的空间矢量物 wa 可用非零的空间转动角速度描述

G(c)上一个正则上的空间3标架均 {(ei)a} 兩两政 → 有期时至转动角速度Slab

→有翔空网转站角速度 Ŝab

 P_{nop} 7-3-7 $G_{(C)}$ 上任- I_{nop} 1 的空间 3 标案场 $\{(e_i)^n\}$ 中的 3 个基实场有共同的空间 转形 A_{nop} (不再有规范自由性).

Note v) 3标铢场的宝间转沙角速度2形式 Ôab

3桶柴吻的到转沙角遊乐量 w^{a} 满足 $\hat{\Omega}_{ab}=w^{c}\mathcal{E}_{cab}$

內一个观者由两个要素次定 ① 世界线 GCI ●线上的一个正例—4标条场 [@o°= Z°]

0→观者作为质点的轨道运动

②→ 空间转动角速度wa 反映观者直转.

最简单的观者:观者在弯曲时空自由下落(4加速A^a=0)无自转(空间转动角速度ω^a=0)

世界线》类时别地线

正刻2-空间3标架场沿线移

多7.4 任意观者的固有生标系 Proper coordinate system of an arbitrary observers.

记录发生在世界线附近的事件 \Rightarrow 观者G(x)的固有生标系(proper coordinate).

GŒ) /

依赖于世界线GCC)及线上正刻3-4标转动 P

P巨+PE的一个空间,绳头定一条处测地线 MG 经过10 类型测电

双地线 空间失量场

2点离世界线GCI)足够近:世界线GCI)的一个学域中有且只有这一至p,存在测地线经过2

S为类空沙地线的伤阱参数(线线参数).	单t切失 Ta = (3/25)a Ta p = Wa & Wp
wa在GU)上的函图-3标果{(ei)a]TY	95量Wi (i=1,2,3) Wa=Wi(ei)a
1些的4个国有生标定义为 ≤ t(e) == tp	印是P作为GL-E的国有时.
	St是Mis)在它的参数值(pp段线k)
⇒ GCI的国有生标系(+,xìì,生标域为	· · · · · · · · · · · · · · · · · · ·
例如 4维闵低时髦中任-洛龙菰生桥东都可看	作以该条20坐标线为世界线的 100年10年
惯性观者的国有生标系	
Prop 7-4-1 国有些标系在任-鱼peact)的生	标基实与观在GCC)的正项13-4标架-致
国而度规 身的 在国有生标	於的分量 gm/p=1/m
吁: 取PSI或旧-4标紫的第1基矢($(e_1)^a \equiv T _{P} \equiv W^a \qquad W^a = W^i (e_i)^a \qquad W^i = 1$
	*决定,线上谷运见的国有生标为
$\frac{z^2}{(e)^a} = \frac{1}{(e)^a} $	=) μ(s)为 χ'生标线 χ'= Sq = S
斯(s) 故 生标基矢 (含x) a	$p = \left(\frac{\partial}{\partial S}\right)^{\alpha} _{p} = W^{\alpha} = (e_{i})^{\alpha} + \overline{k} + \overline{k} + \overline{k}$
同理 (🚉) ^a p = (lz	
国有生标七的生标线要求 χi=o (i=1,	$(V_1) \rightarrow S=0$ $M(0)=P \in G(T)$
=) G(c)为七生标线(t=t=) 切购单键). 切失 (計)a p= Za p=(eo)a.
由此 Ps的国有生标基矢 {(六)°] 重会	
PEGIT) gmu p = gab (3/m)a ((2) b = gab (ex)a (ev)b = 1/m
	规量的 形式简洁 (对绑一些私城)
到有些标系的应用:	L / G(5)/
Def 1 设任xi没观者G的国有性标系,颜色	的蝴珠(至外段L) /p/
位于G的国有坐桥域内,则L在EPEL相对	可观性 G { { な m } } ,

熨 3速 Wa:= dxi(t) (3xi)a

其中xit的是L在国有生标系中以上为参数的表达引

3か速 aa:= かかは)(2xi)a

Note: 若p为L与G线的交互,则可定义L在PS的 3速为 ua:= hallb/Y

E GIE)

其中 Ua为 L的f速, Y=- Zalla, hab= gab+ Za Zb, hab= gachal

4

可以证明交与的两种3建定义等价 has Ub/y = (云) a dri

- ・理解牛棘がり的慢性が与科里奥利力・
- ①非惯性观粒+假想力(fictitions force)使形式上保持牛顿第二定理.

设G相对于某一惯性务的3加速为贡,引入惯性力-m亩 (m为质明量) => 4ン -m亩=mā

上极对G的惯性加速度 d=-a

②观看G转动 引入科验·

考虑一个绕住县轴转动的大圆盘,贴在盘上边缘,则G做圆周运动 [平动/轨道运动]

观者些在转椅上,则马可以做自身的转动

观看运动=轨道运动+标案转动.

盆 镇.

转动 —— 与世界线形状无关,由观者国联的正刻工标案沿世界线的移动决定。

惯性力和科的力分别起源方观者的轨道运动和自转。

讨论:任意时空背影下任真观在 G 对自由质点上的观测

世界线的非测地性+正刻3-3标架的非微移性 >> L具在惯性加速度与科长加速度

=) L受到的假想力为加護×L的质量

Prop 7-4-2 谈观看G的4加速为Âa,自转角还良为wa,被观测的自由险L L Ward Ac 与G的世界线交子PE,L在PE相对于G的3速为Wa,则L在PE相对于G的3加速为Âa

 $\mathcal{A}^{2} = \left(\frac{\partial^{2} \chi^{i}}{\partial t^{2}}\right) \left(\mathcal{C}_{i}\right)^{a} = -\hat{A}^{a} - 2 \mathcal{E}^{a}_{bc} W^{b} U^{c} + 2 \left(\hat{A}_{b} U^{b}\right) U^{a}$

其中(ei)a是观看在P트的正到3一室间3标架,Eabl= Za Edabc Za是G在P트的标志

Eabed 是与时空疾规多的相适触的体动

其标集物沉世界线费利

White property (AD
(a) G世界钱不足测地钱(Â^+0),但仍是无且转现者(w ^a =0).
L在PE相对于G的3加速 Qa=-Âa+2(ÂbUb)Ua
① 邓名G相对于其瞬叶静止懊恼现在的3加速 âa=Âa.
-Aa为非懒性观程G观测质与L运动时添补的慢性加速度.
③ 两项大小Â与Âυ²ω>θ (牛奶近似下u«1)
+2(ÂoUb)Ua为可惯性加速良的粗对论修正项.
(b) G世界玹炅测地玹 (°=0), 但G有自转 (w°=0).
L在PE相对于G的3加速 $a^{\alpha} = -28^{\alpha} \text{kc} \text{w}^{\text{lk}} \text{c} = 2\vec{\text{u}} \times \vec{\text{w}}$
2Ū×G 为观者自转对观者造成的科例加速度
(c) G世界线为非测地线 (Â ^a +0)且有自转 (ω ^a +0).
G.观测自由货车时既有惯性加速度和科的加速度。
(d) G为自由下落无自转观者(词的时空中的惯性观者) (Âa=0, wa=0)
L在PE相对于G的3加速 ar=o 两个惯性运动质色之间只有相对进度而无相对加速度
§7.5 等效原理与同域惯性祭. Equivalence Principle and Local Inertial Frames.
·闰K时至的任-惯性生标系智是\$p(整体)良义的(生标坟覆盖整个流衫)
整体惯性性标系 {t,x,y,z}. G(C) t些析敘
{(卖)°,(⇒)°,(⇒)°,(⇒)°,>GL-个无自转正交归-4标朱吻
惯性观在 G(c)=-条t性标线+4标案协 {(元)α } Αα=0, ωα=0
国有生标条为 {x^*}

(local Lorentz system, local Lorentz frame) - Ga).
自由下落(世界均为测地线)的无自转观者(4标条治线费移)// 测地线
自由下落无自转观者的固有生物系 些 局部惯性条 / 生物或
instein's elevator)引力场中自由下落, 内部的静止观看失重且物体悬浮青
·电梯观者是非惯性系(柤对于惯性条地碎有重力加速度至)
其砌物体受重加g了与惯性力-mrd 由于ma=m工则物体变种的
的一切力多(室内引力作用忽略)实验与远离各星球的慢性飞船内的相应实验有
本原因:Ma=M工等效原理了, 弱等效原理 (weak equivalence principle, WEF
切物理实验结果都-歌 曼因斯坦等效原理(Einstein equinalence principle, E
2红移,光在引力场中走曲线
M M
M → M → M → +也面观看观测到光线在到力的中走曲线
7: 正面— Misner, Thome, Wheeler
饮函— Synge
· 自由导致的复杂/b效应
事曲导致的复杂1/放应 空中由于观者世界线的弯曲(非洲地线)导致的虚假3//放应。
1直时空无沙)做匀加速运动的飞船(非测地线).
临观省感觉自0置身于31分功中,物体向下做匀如速运动,惯性分为mzg
值时空中由于观者的非惯性运动导致的非真实的表现分
不是曲物质产生, 不对应于时空弯曲 ·
理是等效原理的修设性推广,3号广义相对论的诞生
广义相对论

弯曲时空的物理战律遵守的原则:	
(0.) 服从广义协变性原理。	
(b) 分u→Yub 显化至狭义相对论相应良律 / (b	/)服从爱因斯坦等效原理
③等效限理是否存在印例:加速带电松子是否产生电	滋福 斯.
闵呵空: 世界线为测地线的带电和无辐射, 世界	
弯曲 日本日 八 跳啦.	电等效原理推广 A应无辐射
好	
·测地域 Killing 先动积分	曲线
问题:电磁辐射在弯曲性中的定义+等效原理的	表述不够清晰 .
● 存在	
〈良规理论: 安排时望具有废规, 自由负益的世界的	v是该度规的测地线 ···
非度规理论	
复规理论如:广州树弛、Brans-Dicke理论(陶	ungab+标量向p 描述引力) .
判断引力理论的正确性—引力实验 利用等效	原理考虑引力理论)(精确实验验证).
〈任何引力理论都满肠等效原理 WEP.	
若爱因斯坦等效原理 EEP 成正,则引力理论员	能是度规理论。 滿足:
苦强等放原理 (Strong-equivalent principle) SEP E	成立,(P在GR满足[猜想]其杂的度规理论都不
强等效原理 SEP: 讨论条统中的作所激发的自引	
· 吊戏惯性条的特运· 在其中物理规律表现得类似	于闭的时空
Prop 7-5-1 沒G(t)是弯曲时星的自断蒸光自转观表	直(爱因斯坦电梯观查), Jan 是度规 Jan
在任何的国有坐标系的分量,「少如是与多的适面已	的导数算符 12 在该系的克托符,则
$\left \frac{\partial}{\partial u}\right _{p} = \left \frac{\partial}{\partial u}\right _{p} = \left \frac{\partial}{\partial u}\right _{p} = 0$ $\left(\frac{\partial}{\partial u}\right)_{p} = 0$, $\left(\frac{\partial}{\partial u}\right)_{p} = 0$, $\left(\frac{\partial}{\partial u}\right)_{p} = 0$) VpeG

Pf: Prop 7-4-1+ 引望7-4-3+ Aa=0, Wa=0

讨论电磁观象. 弯曲时室中麦克斯韦方程 V^aFab=-4机Jb V[aFbc]=0· 洛仑茲力 包FabU^b=U^bDaP^a=^{DPa} G(t)线上的巨处于其国有惯性条件 「アルン」p=0 狭义相对论的形式 = { F^,,,,, = -4元丁, Fcvo.,nz = 0 [闵氏时里中整体惯性坚振系](2F人,U"=<u>db"</u> 以协变导数要为普通导数 符合爱国斯坦等效原理:物理建律在局部惯性系(沦疮兹生标系)的形式与 O GR前 假设性打卸 电在闭纸时星冷饱截坐标系的形式相同。 ②GR作 由GR拍导得出(加上). Note:结论仅对世界线GCC)上的正成立,偏离GCC)无法保证Pow=0 若 Pow在G四的个学域内为粤,则 VPEG有 豫曼曲率 Rmyの p= (-10[m]p+2[プロローアル]p=0. 即GCC)线上各与曲率为零,与原先设定的对象弯曲时呈不符。 仅对G(t)上的点有Pm,=0. ⇒) 实验涉及的时望区域在世界线GCD的一个足够小时星邻域 U 【等效原理近似成正】 4. 町空曲率的效应只有在足够的时空港围内才能被显示出来。 例如: Si上自己的Rabed 都附屬 45 AS

仅知为养卵时近一个片球面4S,可用该与的中平面的一个部分4S近似代替。

只要有-个生标系的充硫存在生标战中某Ep为零 P°~~1p=0,此生标系为pE的一个局部洛克森系

多7.6 潮汐力与测性偏离方程。 Tidal force & Geodesic derivation equation
· 假想实验 —— 偏离世界线的地方 P°~~+0
30000000000000000000000000000000000000
3/10多强在1处大于2处→环1重加速度大,两名问距增大
了 3·4所线为价偏向于圆h→ 卵形
物理模型:月球引起地球上的潮汐现象(图略太阳影响)
t也球表面被海水覆盖,处于月环引力切中. — 非均引力均
A.B与受用球引力大小不同 ⇒ 两点区离,海面向外鼓起 —— 洮潮(两次)
月 O 自转作 A. B不再正对 ⇒ 海面高度降低 — 落潮(两头)
潮的现象是引力+勿的普遍性版.
回牛顿引力论 $\Gamma(t)=(x',x',x')$ 式州为群2相对于球1的位矢
$\frac{d^2x^2}{dt^2} = -\frac{20}{2x^2}\Big _{\overrightarrow{t}}$
由物第次律 $\frac{d^2(x^i+\lambda^j)}{dt^2} = -\frac{\partial\phi}{\partial x^i}\Big _{\vec{r}+\vec{\lambda}} \cong -\frac{\partial\phi}{\partial x^i}\Big _{\vec{r}} - \frac{\partial}{\partial x^j}\frac{\partial\phi}{\partial x^j}\Big _{\vec{r}}\lambda^j$ 0 Ft.) $\sqrt{3}$
$=) \frac{d^2\lambda^2}{dt^2} = -\frac{3^2\phi}{3\chi^2(3\chi^2)}\Big _{\overline{\Gamma}}^2 \lambda^{\overline{J}} \qquad \tilde{\iota}= _{1}^{2}\iota_{1}^{2}\rangle$
<u>此心</u> 是球2相对于球1的加速度,即潮汐加速度,取决于引力势中的=阶偏号.
区广义相对论(弱吻低速近似为牛顿引力)
(19 1615) 每个小环和可视作自由下落观者 → 世界线为以固有时で为伦射参数的类的测地线切除 / (1855) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
文a=(主) (geodesic Ongruence)
环1 一个 个自由下落多多。
快 ^{没了} 横向曲线从(5):从(5)上任-互切失都不与过该互的现)地线相切
→ 标记与从(s)相交的每-测地线为K(口),且交级固有时て=0
U上的类对矢量的 Za 对应于一个单参做分同胚群(fun).
ル(S)=丸[Ua(S]]为曲线从(S)在丸映射下的1象 ·

爱图斯也时种欢音集企.

MUS)组成3集9,其上包-鱼曲两个家数T.S.决定[2维子流形] \$2000000000000000000000000000000000000
Y上Miny地线构成测地线汇的个子集,其特条测地线可同多数S标记,
→ 单参测地线路(单多观光族) — 铺出一个2组面 У
测地饮汇中的所有测地线 — 充满时里开域 从 【 工厂 从.
-条横甸曲线/w(s)+单线物同限器{pt]→单参测性线族{1s(c)}
测地线切乐均Za诱导的
Y上的生标基本的 Za=(売)a Na=(完)a 对易 O=[z.1]a= Zb Nb Na-1b Nb Za
证明V°Za沉住测性线Vs口为常数:
Z ^b γ _b (η ^a Z _a) = η _a Z ^b γ _b Z ^a + Z _a Z ^b γ _b η ^a = Z _a Z ^b γ _b η ^a = Z _a η ^b γ _b Z ^a
Za为切束, 石沢地线手移 = 1 1 1 Vb (ZaZa) = 0.
即开始时选从(5)与所有15(江)正交,则任一从(5)与所有15(江)正交.
り ^a →W ^a 过该运的测性观看的室间矢量 W ^a ∈Wp. as 签分量
⇒ YoU)与Yasur)为珥1与珥2的世界纹 YoU)为茎住观省 (fiducial observer).
可叶从的重数化为线线数5′,从(5)=从(5′)则W'a=(よ)a=(よ)ads=Wads (はけ Kigl Voylo).
λ ^a = w ^a ds l = w ^a ds l th b th k (τ, s)
珥2相对于环(基本现在)的3速 Űb≡ Za∇aλb
且是 κ (C)上的空间恢量场 $Z_b\tilde{u} = Z_b(Z^a\nabla a\lambda^b) = Z^a\nabla a(Z_b\lambda^b) - \lambda^b Z^a\nabla a Z_b = 0$
入上为空间收量,浏览线方程。
珥2相虾5玤1(基板)的3加速 $\tilde{a}^c = Z^a \nabla_a (Z^b \nabla_b X^c)$ 也是空间矢量场
单参测地线族内与环1-约近的所有小环
$\lambda^{\alpha} = w^{\alpha} \leq \widetilde{u}^{b} = Z^{\alpha} \nabla_{\alpha} \lambda^{b} = Z^{\alpha} \nabla_{\alpha} (w^{\alpha} \Delta s)$
$ \widetilde{\lambda}^{a} = W^{a} \widetilde{\Delta S} \qquad \widetilde{\widetilde{\mathcal{U}}}^{b} = \overline{Z}^{b} \nabla_{a} \widetilde{\lambda}^{b} = \overline{Z}^{a} \nabla_{a} \left(W^{a} \Delta S \cdot \frac{\overline{\Delta S}}{\Delta S} \right) = \frac{\overline{\Delta S}}{\Delta S} \widetilde{\mathcal{U}}^{b} $

普运量[量度单位] 位矢:W ^a 为分离矢量(separation vector).
3 述: $U^b = Z^a \nabla_a W^a$ 3加述: $\Omega^c = Z^a \nabla_a U^c = Z^a \nabla_a (Z^b \nabla_b W^c)$.
为琌(基徽党)测得的3速和3加速(潮汐加速度)
单参测地线族+族内-条基征测地线 Yo (x) ⇒ 确定的 3速场 Ub 和 3加速场 ac ↔ 时空曲率
Prop.7-61 任-单参新测地线族内任-茎雅测地线1610测得的潮沟加速度与时空的
曲率张重有如下关系,即测性偏离方程(geodesic deviation equation)
ac = - Rabac Ze wb Zd
Pf: oc = Za Va (ZbVbWc) = ZaVa (wb Vb Zc) = ZaWb VaVb Zc + Za (VaWb) Vb Zc
PC = Zawb VbVaZC - Zawb RabdcZd = WbVb(ZaVaZc) - (WbVbZa) VaZc - RabdcZawbZi
$[Z_1 w]^a = Z^b \nabla_b W^a - W^b \nabla_b Z^a = 0 \qquad \qquad = \overline{Z^b \nabla_b W^a}$
EP Pc=-(ZbVbWa)VaZc-RabdcZaWbZd=-gc-RoodcZawbZd.
=) ac=-RabacZawbZd
ifite ac=-Robac Zawb Zd
U) 反映 Q ^c 与时空曲率站量Rand ^c 密切联系
平角时空 Raba ^c =0 別 a ^c =0 初始刊的测地族中至刊
弯曲时星 Radd ^c +0 不足a ^c +0(缩并) 但设在个1单参测地线液,其测地偏离a ^c 非雪
ィ初始平行 Ub τ=0= Za∇aWb τ=0=0,即两邻近测地线开始所相对3速为零。
之而不再平疗 Ub 1 t + 0 [€3.15 曲率继重非蹇 ⇔ 存在初始平行后来不平行的测地线]
e) 描写两条形段舒近测地线相对加速度ac
万离天量W描写两线万离情况 Wa +0 有万离
3速度 Lb (wh的-所数)描写两线分离情况的变化 Lb+0 分量矢量变化
3如速度ac(wr的-阶势)描写两线偏离情况 ac 拟为粤 测地和偏离
例如程jgg中 ①平行测地线族·/// ② Ub+0, a ^c =0 /

的 就将 Pow 依赖于生标系, 局部惯性分中 Pow p=0 ⇒ "矢重" 黎曼纮星 $Rood^c$ 为几行量, $Rabd^c$ →潮汐加速 Q^c 无法通过坐标受换消除 测地偏离处可以感受到引力效应 Raba^c +0 => 潮汐力 △入如此小→验证"时星曲率效应仅在足够的时空英国内显示" (4) 纯数3岁虎:测地偏离方程对类时、类星、类光测地线)获都成立. 乙→测地线的信钥参数,0°无潮汐加速度物理意义 方為矢量Wa→YA不定正交于 Za 夏观为洛伦菰鳝的时室→度视为非洛伦菰鳝的空间 → (M, Va) 贝测地偏离方程为 a^c=-Rabd^cT^aybT^d a^c=T^a∇a(T^b∇b y^c) 其中Rabdc为黎曼状量,下(()) 为基准测地线16(1)的切失,1/2为16(1)上的分融量 多7.7 爱国斯坦场話 The Einstein Field Equation ①物饭布产生引力,引力表现为时室弯曲 > 时星曲半受物饭分布(能动铁量Tad)影响 对此测地偏离方程与牛顿引力论的海孔约力表达式: 中央: $\frac{d^{2}w^{i}}{dt^{2}} = -\frac{3^{2}\phi}{\partial x^{i}}\frac{w^{j}}{\partial x^{j}}\frac{\{x^{i}\}}{(\lambda+w)}$ $\alpha^{c} = \alpha^{i}\left(\frac{3}{3x^{i}}\right)^{c} = -\left(\frac{3}{3x^{i}}\right)^{c}w^{j}\frac{3}{3x^{j}}\left(\frac{3\phi}{3x^{i}}\right) = -\left(\frac{3}{3x^{i}}\right)^{c}w^{b}\partial_{b}\left(\frac{3\phi}{3x^{i}}\right)$ $\mathcal{O}_{c} = -M_{p} 9^{p} \left[\left(\frac{3^{x_{i}}}{3} \right)_{c} \left(\frac{3^{x_{i}}}{3 \phi} \right) \right] = -M_{p} 9^{p} 9^{c} \phi.$ GR: QC = - Rabac Zawb Zal Rabdc ZaZa ← abaco 取缩并c→b. Rab Za Zb = 4元Tab Za Zb 精测 Rab = 4元Tab. 期望

由 \$64 2ªTab=0 \$1替换额) \ \ \PaTab=0 ⇒ \ \PaRab=0 Bronchi 博達文 V[aRbc]de=0=VaRbcde+VcRobde+VbRcade 黎安由辛Rased1,2即於 e>a编并 VaRscaa + VcRabda + VbRcada=0 ▽aRbcda - VcRbd + VbRcd = O Rabcd 1,3或2,4缩并 → 里奇兴堂Rbd d升指核→b编并 VaRbcba-VcRbb+VbRcb=0 Rbd 1,2缩并→ 标覧曲率R. 艺 PaRab=0 R) VaR=0 $R = Ra^{\alpha} = 4\pi T_{\alpha}^{\alpha} = 4\pi T_{.}$ => VaT = 0 时轻战内 Ta_{0} 的迹为常数. 例加理想流体 T=Ta^a=ρUaU^a+ρ(Sa^a+UaU^a)=-ρ+3ρ. 牛顿近似下 ρ≫ρ 故 T≅-ρ 即能量家庭ρ在整介派体动中为常数 不管定理想流体的情况 ⇒ PaRab不应为零 由此 Rab → Gab=4元Tab Gab为(0.2)型对於张量且 PaGab=0 爱因斯坦狄童 Gab=Rab-İRgab 且 VaGab=O 假定 Gab = 8元Tab EP Rab-主Rgab=8元Tab 可以在牛顿近似T≥-P下满处Rab ZaZb=4~Tab ZaZb b新赫林→a编并 R-IRSaa=8元T. 即 R=-8元T Rab = 8 TTab + 1 (-8 TT) gab = 8 T (Tab - 1 Tgab). 棚城 $\operatorname{Rab} \mathbb{Z}^a \mathbb{Z}^b = \operatorname{St} \left(\operatorname{Tab} \mathbb{Z}^a \mathbb{Z}^b - \frac{1}{2} \operatorname{T} \operatorname{gab} \mathbb{Z}^a \mathbb{Z}^b \right) = \operatorname{St} \left(\rho + \frac{1}{2} \operatorname{T} \right) \cong \operatorname{St} \left(\rho - \frac{1}{2} \rho \right) = \operatorname{4t} \rho = \operatorname{4t} \operatorname{Tab} \mathbb{Z}^a \mathbb{Z}^b$ 以下义相对论的基本假设(1915).一爱因斯坦切诸 描述时至断率与物质场关系的方程 Gab = Rab-立Rgob = 8元Tab

itie Rab-= Rab= 8TTab. 以凤版时室Rabed=0 ⇒ Gab=0 ⇒ Tab=0 没有物质 ×. 狭义相对论忽略物质之间的引加作用(产生的引力场) 时至近似相 狭义相对克物理学是广义相对论)物理学在引力(时空曲率)可忽略时的近似 引力不溶略→ 时空不能如此看作中直 → 不能使用狭义相对论 p Tob=0 真空曼因斯坦方程 Rob-はRgab=0 [株心会数组gan的-组集线性2阶偏微方程] 造院生物からかり、 アプル = 」 タのク(タアルル + タルアルー タルルア) Ruo = Ruvo = Puno, v - Funo, + Formore > - Formore Rav (Gav)对 gav 的依赖关系高度非线性 Tab=0 => 标量曲率P=0 真宝曼因斯坦活程 Rab=0 一 輕度概 分的 擊隻 张 童等 其外 从 张 童 . 的 Tauto 有源爱因斯坦方程 施瓦西内部解、宇宙FLRW解··· 类比有病表充斯韦方程 P^aFab=-4元Tb 一 背景均定好后给平电流矢量 T^a求解电弧场张量 F^{ab} 线性活程组,解构线性叠加仍是解 有源贸图斯坦方程 Rab-主Rgab=8元Tab 一联之并解描述物质场的量Tab与度规了ab 非线性活程组,解的线性叠加未必定解 例如皇埃(压强P=o的理想流体) Tab=pUallb Ua=gacUc, Ua类时归一发动 都涉及度规分的,无法将T的作为欧量 对理想流体:▽ªTab=0为物质吻运动方程, (尘埃) 尘埃粒子世界钱为测地钱 → 指于至自31大的333的的为小物体·

7.P.1 线性近似 [线性引力论) (linearised theory of gravity)	
近似目的:	
① 简化问题为线性.⇒适用于包含的引力物很弱的情况	
例如,引力波(gravitational wave) 遥运地方传播至地球时引力场很弱	
间境探测— (1993 Nobel Prize) 探测脉冲双星(binary pulsars)	转测期效
两屋件围绕体系协い转动,释放引为澳带走能量, 体系能量减小表现力	转涉程减小
直接探测— (2017 Nobel Prise) LIGO探测器探测到双黑洞台并的引力激信号	
2023 FAST YY铈茲弘次(频率10 ¹ Hz,周期较年,淡钛数光年)) .
引力浪鴻 — 恒星晚期引力坍缩(gravitational collapse)、起新묕摹发(supernava	explosion) -
②验证牛顿引力讫是广义相对讫的弱场低速近似	
线性3 力论背景时至(IPt. Jad).	
弱引力场条件:时程衷规 gab 接近闪知度规 Vab	
gab="Nab+Yab Yab在Nab的某个流径孤烂标系针以门的分量 .	Yau << 1.
背景褒规 (Vab (国纪变) + 徽稅 Yab (物噁冰险时间溴化,2阶项和高阶项可忽略)	
约定块量插桥价降用飞响与火焰 但 g咖定>> goodgac=Sbc.	
gob = Nab - Yab.	
東京王: gab gac = (nab - yab) (nac + Yac) = Sbc + nab Yac - nac Yab - Yab Yac 2所限と時に	
$\cong S^{b}_{c} \qquad \qquad \text{Noc} Y^{ab} = \text{Noc} Y^{ao'} Y^{bb'} Y_{a'b'} = S^{a'}_{c} Y^{b'} Y^{b'} Y_{a'} = S^{a'}$	bb'γ _{a'b'} = η bb'
设 au和 Ta是 Nub和 gub 选自任约号数算符	
Gas = Rob - 12 Rgob = 82 Tab . Rabed = -20 [a] db]c + 210 Tim.	
Toloc = = 2 gde (20 get 20 gue 20 gu) = = (yde - yde) [26 Vce +] 201	pc = 0
婵健.	

87.8 线性近似术中中顿近似 Linear Approximation and the Newtonian Limit.

1門京的符 アロンCob = こりod (darbol+dorad - darab). 统性黎曼强量(黎曼张量的4阶亚队) Rased = -22 [a] "db]c = - nde () Tarb I Yee + 2 [a3 |c| Yb]e - 2 [a3 |c| Yb]e) = -N,de (dc drayble - dedlarble) = dd dlayble - dcdlaybld. 线性野线量 (野线量的1阶到以) y 2020 Yac $R_{ab}^{(i)} \equiv R_{acb}^{(i)} = 3^c \partial_{[a} Y_{c]b} - \partial_b \partial_{[a} Y_{c]}^c = \frac{1}{2} (3^c \partial_a Y_{cb} - 3^c \partial_c Y_{ab} - \partial_b \partial_a Y_{c}^c + \partial_b \partial_c Y_{a}^c) \; .$ = $\partial^c \partial_{(a} Y_{b)c} - \frac{1}{2} \partial^c \partial_{c} Y_{ab} - \frac{1}{2} \partial_{a} \partial_{b} Y$ 线性标量曲率(标量曲率的1阶近似) $R_{(1)} \equiv \lambda_{ap} L_{ap} = \lambda_{ap} \beta_{c} \beta_{a} \lambda_{pc} - \frac{1}{2} \beta_{c} \beta_{c} \lambda_{c} - \frac{1}{2} \lambda_{ap} \lambda_{ap} \lambda_{c} = \beta_{c} \beta_{p} \lambda_{cp} - \beta_{c} \beta_{c} \lambda_{c}$ 线性爱因斯坦张量(爱因斯坦张量的4阶近似) $G_{ab}^{(1)} = R_{ab}^{(1)} - \frac{1}{2}R^{(1)}\eta_{ab} = \left(3^{c}\partial_{(a}\gamma_{b)c} - \frac{1}{2}\partial^{c}\partial_{c}\gamma_{ab} - \frac{1}{2}\partial_{a}\partial_{b}\gamma\right) - \frac{1}{2}\eta_{ab}\left(3^{c}\partial^{d}\gamma_{cd} - 3^{c}\partial_{c}\gamma\right)$ 线性缓因斯坦方程 (linearized Einstein equation) $\partial^c \partial_{(a}Y_{b)c} - \frac{1}{2} \partial^c \partial_{c} Y_{ab} - \frac{1}{2} \partial_{a} \partial_{b} Y - \frac{1}{2} \eta_{ab} (\partial^c \partial^d Y_{cd} - \partial^c \partial_{c} Y) = 8\pi T_{ab}$ 2 Tab = Yab-1 Vaby - 1200c Tab+ 20 dea Tore - 1 Jab 20 2 Tred = 8 n Tab. 回版间的时空中的药斯韦禄 2aFab=-4元Jb Fab=JaAb-JbAa ⇒ 2aJaAb-Jb2aAa=-4元Jb 设义为任于标量的 规范变换 Ãa=Aa+∂aX ⇒ Ãa=Fab 对应相目的Fab 选择洛龙孤规D 20 Aa=0 巍斯韬 2ªaaAb=-4元Jb 线性爱因斯坦治程中的规范自由性: 谈至是任意形外交量切 线性到力论的规范变换 Tab=Tab+da3b+db3a a5a的可交换性. ⇒ Řalcd = Ralcd 对应于相同的线性攀曳地量 Ralcd / Rab / Gab 线性引力论的洛仑森积基条件 2bTab=0 [可以证明Yab的等价类中存在3类满足比规范]. 法包备规范下的线性爱因斯坦活程 2°dc Vab = -16元 Tab.

7.8.2 牛顿极快,

例如地球周围的引力切中

E5D是地球和地面大肥发出的炮弹的世界线(粗对建率UED<1).

从是宇宙射线中某高速(地球观看)从子的世界线(相对这率以底至1)

低速条件:存在Yu的惯性生桥条 {t,xi}在期计论对象的生标选率都远/于1.

弱切条件: gab=Nab+Yab Yab是Y量即 |Ynu|=|Jau-Ynu|<<1.

(t,xi)满足 υ 刘力切源的能动脉量可影力 Tab≅ρ(dt)a(dt)b (Too=ρ, Toi≅0, Tij≅0).

矽量発度Tai由于物体低速运动而很小·3维应力Tjj与质量聚度户相较可忽略·

——牛顿引力论中仅有质量冠度p 对引力切有贡献

以 a. 引力物源低速运动导致时空时缓慢变化 3/m ≅ 0

b. 物体低速运动导致具4速以°近似于(t,x门观者的4速 Z°=(元)°

洛克兹规范下的线性爱因斯坦方程万量形成两边.

全φ=-ネトテ∞解釋炒牛椒3/炒势

4顿引p论中的泊松方程 P*中=4元P· [物质如何产生引p物].

地球麦面物体自由落体, 治测地线运动·

dr =0 (建近从建).

在代水中 dxm+PM dx dt dt=0 $(t = \tau, U^{\alpha} = Z^{\alpha} = (\frac{3}{24})^{\alpha})$. $\chi^{\circ} = t \frac{d\eta^{\circ}}{dt} = 1$

$$\mu = 0 \quad \frac{d^{2}x^{0}}{dt^{2}} = - \left[\begin{array}{ccc} \frac{\partial x^{0}}{\partial t} & \frac{\partial x^{0}}{\partial t} & - \\ \end{array} \right] \frac{\partial x^{1}}{\partial t} \frac{\partial x^{0}}{\partial t} \qquad 0 = - \left[\begin{array}{ccc} 0 & 0 & \text{trivial} \\ \end{array} \right]$$

M=i Ari = -Pi .. dr dr dr - Pi jk dt dt

$$\begin{split} & \vec{Y}_{ab}^{y} = \frac{1}{2} y^{ah} \left(Y_{yy,o} + Y_{\sigma \lambda, \nu} - \vec{Y}_{y\sigma, \lambda} \right) \cdot \\ & \vec{Y}_{ab} \equiv \vec{Y}_{ab} \left(\text{dt} \right)_{a} (\text{dt})_{b} = -4 \phi \left(\text{dt} \right)_{a} (\text{dt})_{b} \\ & \vec{Y} = y^{ab} \vec{Y}_{ab} = \vec{Y}_{ab} \cdot \vec{Y}_{ab} + \frac{1}{2} y^{ab} y_{ab} + \frac{1}{2} y^{ab} y_{ab} + \frac{1}{2} y^{ab} y_{ab} y = \vec{Y} + 2 \vec{Y} \quad \text{BP } \vec{Y} = -4 \phi \\ & \vec{Y}_{ab} = \vec{Y}_{ab} + \frac{1}{2} y_{ab} \vec{Y} = -4 \phi \left(\text{dt} \right)_{a} (\text{dt})_{b} - \frac{1}{2} y_{ab} \cdot 4 \phi = -\phi \left[\left(\text{dt} \right)_{a} (\text{dt})_{b} + 2 y_{ab} \right] \\ \Rightarrow \vec{Y}_{ab} = \vec{Y}_{ab} \cdot \vec{Y}_{ab} \cdot \vec{Y} = -4 \phi \left(\text{dt} \right)_{a} (\text{dt})_{b} - \frac{1}{2} y_{ab} \cdot 4 \phi = -\phi \left[\left(\text{dt} \right)_{a} (\text{dt})_{b} + 2 y_{ab} \right] \\ \Rightarrow \vec{Y}_{ab} = \vec{Y}_{ab} \cdot \vec{Y}_{$$

第8章 爱因斯坦方程的求解 Chapter & Solving the Einstein Equation
§8.1 程态时室和静态时室. Stationary spacetime and static spacetime.
Def 1 时皇(M.Jab)称为稳态的(stationary),苍色存在类时Killing大量场 3 ^a gab初为稳态时髦。
次教科先幼 5° 秋凉曲兴参数为七,即 5° = (元)° 为5°的远面比较旅 (人5°=(元)°
以七为蒙谷量(t=x*),3°的积分曲线Cl+)为7°生标线的在-生标长(x**) (cl+)
在此生桥系下度规步量为gm = (1:3)m=0 [Claim 4-2-2]
gm=gm(xi) 全部gm都与时间性标七元美,具印时间平移不变性 <>> 稳态。
若(M.ga)中存在同部生标条(xო)使 →t =0 (t=x°为类时生标)
叭兮°=(云)°是坐桥饯O上的光滑矢ʻ重汤且 (2x*)是3*的逐配坐桥系 ⇒ (239),, = →3+= = 0
在0上有人33m=0 故 3°=(卖)°是类时Killing 矢量场
稳な时室的坐标录言:皮尖:若存在岗域坐标系1mm(坐标戏为0)便多w的全部/量与类时生标7m元关
则至少(0·gab)是释吞时皇。
程态时应 √应 不随时间率比约引加
借用观看判断引力均的稳态(康规分量不随时间要化)时需多选择恰当的观看(参教):
观者的世界线重合于类时Killing大量的的积分曲线
例1:闵丽町空(肷*1/w) 其舱旅坐标系{扒}的第室坐标基矢场 (云) 是类时 Killing ⁄堤场
例2、2维时程度规在某些标分(t.x/下写作 ds=-t ¹ dt ² +dx2 取生标要换 T=t ¹ dT=-t ⁻² dt
⇒ 在{T,x}下 ds²=-dt²+dx* èés. 稳态性是时里的内禀以疗性疾,不因生桥*选择而变
Def 2(M.gob)中的矢量场 Va称为起出陶正庆的(hypersurface orthogonal)
岩VpeM 存在能曲陶区使peΣ且Σ处处与3°平政
Def3 时至(Migus)初始育态(头wic),先陷在越幽西球的类时长illing只量场 gas为静态度规
de la partie de la constante de la partie del partie de la partie de la partie de la partie de la partie de l

		24-4	tl ²⁰ 1./ P/ /	
Claim 8-1-1 153 = (3	走)a是Killing矢量场,Σ==	peM tup)=0 }	Zo za	7 (M, gab)
是处处与5°正实的超幽	晒,则越曲面 Σti= (þeM lt	中)=七】也久以小与3°正成	Cu	(0,{xi})
构起蚴蜥标志:	: 设静标理(M,gon)上的\$	时Killing 矢量场为至a=	:(計), 工。为与3°正	京的 起咖
3ª的图象积分曲线 CU+)与	与乙的变色>恐作曲线参数的	9零至t(p)=0 在2。	上选品议生标教育农村	\
□ 乙。上各区的3°+0 =>	利用多的积分助线将3个约	轿"携"至5以外		
	积与曲线上名与C(t) Yt的	xì = 积分曲线写Σa铂	9克丘的χ ⁱ	
,积础战的参数七件	为线上ほC类时生标 Y°(Killi	y时间坐标)		
=> 4维南欧生林和{t	t.xi7 类时生梅基矢(完)	*5类空桥基(六)	弧顶 [越鲫政]	生].
	きゅう ショー・トゥラ・	{tixi}为时轴	政场系	
ds= goo (x1, x2, x3)) dt²+ g _{ij} (x',x²,x³) dxido	rā (time-ortho	gonal coordinate syst	tem).
稳态时星期时间平移	一夜性 / 静态时星具有时(可平移不变性和时间1	刻不变性	
沒3°=(3+)°是能曲面正	庆的类时 Killing 经量场			3ª P.
时间负射变换为微分同	N胚映射Þ:M→M 满足t[φ(p>]=-t(p), χ ⁱ [φ(p)]= x ⁱ (þ).	ф(р).
时间平移变换为微分同	N胚映射覧M→M 满足t[φίρ>]=tp+to, χi[φ(p))]= χ ⁱ (þ).	对初性
由Killing缓场了诱	的单参微分同凡群 (pe telr)	是蝉雾霞视群,) 鄭 ø	·是等juw.juy, 改享	•
下证 申艮等度机映射 =	⇒具有时间板射对称性:			
谈CUI为多型的积分				
C(ta)=p (tù 《[(元)* ₀]=-(元)* ₄ }山和(**8)山在(ta*)条的市	$\phi_* \left[\left(\frac{\partial \gamma_i}{\partial \gamma_i} \right)^{\alpha} \Big _{p} \right] =$	() (izl,2,3.	
φ(q)=1 + (Lt) 2.0 g	βοδπ(\$*8)αδ在[tη*]条的方	量为g,n 和(p*g),m		
$(\phi^*g)_{oo} _{p} = [(\phi^*g)_{ab}]$	(3t)a(3t)b] p=[gab(0x	= [(4, 3+))] \ = [gob (#) (#)] q	= 9 r
由于 0= (上多子),,,, = 38	型即 别以沿CU)为常数] q=g p. =]	壁 (4*g)ijlp=gij	l _*
$(\phi^*g)_{a,b} = -g_{a,b} = 0$	o 故 (p*g),,,, p = q,,, p	ΨPεM 故(Φ*g),	b=gap 6:W→M;	够良权映

§8.2 环对初时室 Spherically symmetric spacetime

3维欧的宝间(IR3, Sab)中的2月珠陶(S², hab) ds²= r²(d6²+sin²0dq²)

具有最高对称性的空间Killing矢量切个数 ±n(n+1)=3

"31"= (=) (pw (S1, hab) 具有绕 = 轴旋转不变性,某秘曲线为球面上所存纬线

 $3^{\alpha}_{2} = \left(\frac{3}{3\theta}\right)^{\alpha}$ Sin $\varphi + \left(\frac{3}{3\varphi}\right)^{\alpha}$ cot θ cos φ $3^{\alpha}_{3} = \left(\frac{3}{3\theta}\right)^{\alpha}$ cos $\varphi - \left(\frac{3}{3\varphi}\right)^{\alpha}$ cot θ sin φ

-个Killing.失量切对应的单對數戶同胚群是单多等度规群

李祥孙ઓ:群GLA玩象f.g.,称为gg.eG,GラG'z〗吞砥映射P:G→G′

李祥昞是-个群也是-个流形,群上乘法映射5逆元映射都是C°°

[詳]「高杰 (homomorphism) p(g,g2)=p(g,)・p(gs) ⇒ 同村(isomorphism) p为一旦到上的。

[考詳] 徽与同胚(diffeomorphism) f: M→M'--到上且f, f+为C™的 ⇒ 梦鲜同构 G:=SO(3)

⇒ (S², hub)上所有等度规映射的集合是个3多数群(群组数为3)同构于3组联品空间的转动解SO(3)

流移M上徐定-个h开K量toVa → {Æ|telR}为单约数分||胚群 dim Gd = ∞ M上的微分同胚群 |M上MAM的同胚映射组成的集合 Gd= {dff: M→M}是个群乘法为映射复合的李祥

面心度规(Miguo)由定义 Killing大量场 5° → 鲜等度规群

M上所有等度规则的内的辞 G;= fiso.M→M} dimG;< n(h+1)

—M上的等度规律

蜂鹤与同胚群G.={44|te1R}中的任→恭作用于∀PeM所得的色的集局为G.的过Pe的-条轨道

>推了至M上微河胚群的任子群 [辖规群]

如 Gz为(5°,hu)上的等限机群(=SO(3)) 则Gz过VPGS°的轨道为5°车身.

Def 1 时生(Migas) 初为球对秘的 (spherically symmetric) 若其等限规群含有一个580(3)同构的子群 G3 CG;

EG3的所有轨道(7动5铢外)都是2维玤面,这些球面粉为轨道玤面.

Note: ① 玤对粉町室的等度规群 Gi > SO(3)群

如河的野生的等族机群有10个多数但有同构于50(3)的子群且其轨道修介不知与新都是2维球面

③ 时至=度股功+物质物 散粉环对称 => 环对的时室.

等度概器中与80(3)同构的3群G3对应于3个独立的Killing只量的 3°,52°,55°

设Y是G3的一个轨道(>维球面),则引,2°.3°从Y上任-些战的积殃线

都躺在9上 => 34.54.54切于球面少

河的对生来惊性条的同时面之。

2维轨道球面分

9上的引充。系用gao在9上游子的展现gao衛童也是Killing 乐量场 => (4, gao)为最高对称性空间 gao = Khao

即存在常数K70和坐标系10,47使 ds=K(do+5m*0d42)

例如 4组间的时空 ds'=-dt'+ dr'+ r'(do'+sixoder) = -dt'+dr'+ds'

K为轨道z球面YN程的转.

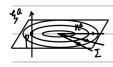
Mp 非預时空 Ka轨道对画的面积,沒拿是Y上乳运配的面元

 $A = \int_{\mathcal{Y}} \frac{\hat{\mathcal{E}}}{\hat{\mathcal{E}}} = \int_{\mathcal{Y}} \sqrt{\hat{g}} \ d\theta \wedge d\varphi = \int_{\mathcal{E}} \int_{\mathcal{E}} d\varphi \int_{\mathcal{E}}^{2\pi} d\theta \sin \theta = 4\pi K \ . \quad K = \frac{A}{4\pi} \quad \text{Res} \quad \hat{\mathcal{E}} = \frac{A}{4\pi} \int_{\mathcal{E}} \hat{\mathcal{E}} = \frac{A}{4\pi} \int_{\mathcal{E$

粧环矿的了路到坪山的物理影火:

①时星海移上不存在可以秘作为少的环叭的气. 玡响中(R×S)

②由于陈朓·凯宁·谷运到珲·小的15码定义与书红7门·


3 标心作的·

S8.3 港面真皇師

Schwarzchild vacuum solution

8.3.1 静态环对和原规 Static, spherically symmetric metric

Claim 8-3-1 沒靜态球对酚时至(Migus)只有个起曲面正交的类时 Killing 失量场多。则其等度执影中与SOU》目构的分降G3的阶值轨道球面外与梦正友。

设工是53°正安的起曲面,则 G>过任-\$P的轨道球面躺在Σ上.

静态线表达式 ds=g.o(x',x',x')dt+gij(x',x',x')dxidxi.

球对務性简化线元: 些标系(t,xi]= {t,r,0,4}

- Y 庚x 为它价在的轨道环墒牛往.

满足的= p2(d0+5in20dp2)

- θ, ψ: 在Σ上第一轨道球阻宁 任选球坐桥θ,Ψ,宁튗Z上的2维挺凿圆, 集L在切于Σ的怪-法矢吻ル

N^秋市田绒外处与轨道球面正交,且可以携带8.4至靶轨道球面. ⇒ ∑上有局域坐桥系{8.4}.

由此法外访阶的称为曲线与YY标线 $g_{\omega}(\frac{2}{27})^a(\frac{2}{20})^b=0$ $g_{\omega}(\frac{2}{27})^a(\frac{2}{20})^b=0$

gijdxidxi中灰叉顶 drdo,drdp项为复 > dsi=Joodti+Judri+ ri(doi+siniodoi)

辭春→ J.o., g., 不是七的函數 珥巧粉→ J.o., g., 不是も. 4的函数 ⇒ g.o=g.o(r) g.=g.(t)

拟波 ds2=-e2A(r)dt2+e2B(r)dr2+ r2(d02+sin20dq2)

有唯一静态Killing-矢量场的球对粉度规在坐桥系ft.vr.0.47的一般缺元

8.3.2 施瓦西真空解 Schwarzschild vacuum solution

满足真空爱因斯坦方程的静态球对称度规剂对施丽国宾解(Schwarzschild Vacuum solution)

奧達奧因斯坦方程 Rab-ℲRgab=0 兩边维弁gab R-ℲR×4=0

9m -> Par -> Ray=0 \$AA(r), B(r):

$$R_{33} = -\left\{e^{-\lambda B}\left[|+r(A'-B')]-1\right\}\sin^{2}\theta\right\} \qquad e^{\lambda A} = \left(|+\frac{C}{r}\right)e^{\lambda A}$$

$$\Rightarrow e^{2B} = \left(\left(+ \frac{c}{r} \right)^{-1} \right)$$
 (C为称后缘数)

$$ds^2 = -\left(1 + \frac{C}{r}\right)e^{2\alpha}dt^2 + \left(1 + \frac{C}{r}\right)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

'戻义新|坐标(・吸收相因子) f=e^at 由すα 端数 タ゚=(³元) せん ドルッタ を り f→t

施西真宝解
$$ds^2 = -\left(1+\frac{C}{r}\right)dt^2 + \left(1+\frac{C}{r}\right)^{-1}dr^2 + r^2(d\theta^2 + sin^2\theta d\phi^2)$$

r→∞ 施丽西霞枫回到球些标系的阔晓枫 ds=-	dt²+dr²+r²(dθ²+sin²θdq²)
> 沈瓦西底机走渐近植的	
r是够大时 「女相对心的缘性近似适用 (1+°C)」2~1-	CY
$ds^2 = \left[-dt^2 + dr^2 + r^3 (d\theta^2 + sin^2\theta d\phi^2) \right] - \frac{c}{r} (dt^2 + dr^2)$	
fact = gab = hab =	·Yab
$Y_{00} = -\frac{C}{Y} + \frac{4}{3}N_{3}H_{3} + \frac{1}{2}Y_{00} = \frac{C}{2Y} = -\frac{M}{Y} + \frac{1}{2}V_{00} = -\frac{M}{Y} + \frac$.≂ 2 M∖
旋旋重度的 ds'=-(1- 21)dt'+(1- 21 1)-1+1'(d0	²+sin²adφ²) 其中M为星体质量.
许6个静态球对称他星外部的空间11万	静态球环脉 P G, G,
G.,G.为静存观者【整于Killing《建场多的水分地线》	恒星轴电荷
丽巷的8.4坐标-颈、4坐标分别为572.	(M,gab) (Σ_{t},h_{ab})
攀曼宝闰帕两三號萬環义遴接两三阶自曲线中最短线(θ,ν)端数)
Zt上P,122间赋帐 {=∫√hijdidai}= (r. (1-2 ^M) ⁻¹ dr;	· rr. 生有挺高
L为G、和G、的国有距离(proper distance) 灰映(Σt. hoo)f	
3.3·3 引力场的时髦弯曲理解 - 重加速度	Gs 1/2= (-3a5a) ³
Gs 「义相对记气维观点: 下落中阶帧测性运动, 个和下落物阵所变的重力加速度是G在P时刻相对于	速为雹;稚态双楫 4地速非霯 Aª=∇VkV
「熟物作价贷的動力加速度是G在P对刻相对于	Gs的3加速 Q ^a
当教服理 預时至⇔弯曲时至 瞬时静山双名 G测 G	
$A_{a} = \nabla a \ln \chi = (d \ln \chi)_{a} = \chi^{-1} (d \chi)_{a}$ $\chi = (-3a5^{a})$	$\frac{1}{2} = \left[-g_{ab}\left(\frac{3r}{2r}\right)^{6}\left(\frac{3r}{2r}\right)^{6}\right]^{\frac{1}{2}} = \left(-g_{ab}\right)^{\frac{1}{2}} = \left(1-\frac{2M}{r}\right)^{\frac{1}{2}}$
$= \left(1 - \frac{2M}{r}\right)^{-1} \frac{M}{r^2} (dr)_{\alpha} \qquad \qquad d\chi = \left(1 - \frac{2M}{r}\right)^{-1}$) = = (
31=1A9=(3wA9Ab)=(90DAaAb)=[(1-2M)-2-M2 9	$ab(dr)_{a}(dr)_{b}$ = $\left(1-\frac{2l^{M}}{r}\right)^{-\frac{1}{2}}\frac{M}{r^{\nu}}$
$=\frac{GM}{r^3}\left(1-\frac{2GM}{c^3r}\right)^{-\frac{1}{5}}$	$g'' = \left(1 - \frac{2M}{r}\right)$

191 = GMo = 9.8 ◎ 积态时至存在-A*=-V*l×X的引加功,是地球引加功勇的T×相对论表述 [可亟过生标变换消核] 等地 ② 非稳忘时至没有稳态观者 ⇒ 弯曲时至存在测地偏离放应 [相对引力效应] 由时空曲率Pabed 产生. ② 暂时里在同一旦Rabed=0 不存在外的及其效应 8.3.3 伯克霍夫定理 Birkhoff's theorem. ① 艎、砌脚的 ②静态+球对剂 ⇒ 施晒斛 1923年 Birkhoff 证明定理: 真宝曼因斯坦方程的环对粉解必静态 应用:非静态物质分布只要保持球对移分布,外部时空UF(B由施瓦西真空解描述 一 研究星体演心(塌缩,膨胀,经向振荡或爆炸) 类比吨动力学定理: 瑛对孙电符历币的电弧沟 (即真定预斯韦)程的珠对阶舯)从*静电汤 不存在球对於电磁波 牛球面电弧数 (激性面对)有但已,居无球对私性) 电磁辐射:垂顶欧米钉偶极辐射, 没有单极辐射 引力辐射主要贡献来自于四极辐射,没有单极辐射和偶极辐射 ⇒ 修改 Birkhoff定理,真宝曼因斯坦方程的球对粉解必施瓦西度规) 延柘下的范瓦西度规(在部分时至区域)内箭非稳态.[类时Killing天量场(螽)*)要数类至] 1963年 Petrov 质疑 Birkhoff定理 1988年 Kuang a Liang 球对粉性弱化为类珍球对轮性

Reissner - Nordstron (RN) solution §8.4 末斯纳-诺斯特朗解 8.4.1 电磁真空叫空和景因斯坦-麦克斯韦活程 P条电磁切外没有物质场的时室称为电磁真室(electrovacuum)时室 无源电弧场 Fab 的能动张量 Tab = 4元(FacFic- + Fab Fcd Fcd) 电磁真空下爱国斯坦方程 Gab = Rab-云Rgab = 8RTab = 2(FacFoc - 49abFcdFed) Fab满映剪曲时室的无源表斯韦程 Pa Fab = O Ra Facz = O R => Einstein-Maxwell 方程组 一电弧真空时空由背影流码M. 真枕切牙db和电弧切下db 决定 · 电弧切下w 培物理性质历为类类电磁场和非类类电磁场: 段复数量功 Zab := Fab+i*Fab **Fab是Fab的可偶数历形式 \(\Side \Side \Side \Delta \Fab *\Fab \) Fab为类地磁场 (null electromagnetic field) 若 ∑ab∑ab=0 ⇔ FabFab=0, Fab*Fab=0 Fab为非类地磁场 (nonnull electromagnetic field) 若Σab Σ^{ab}+O P鱼的瞬时观告(p.Za)测得电动 Ea == Fab Zb A&切 Ba == -*Fab Zb —观想像颗的 ⇒ 构造不变量 FabFab = 2(B²-E²) Fab*Fab=4Ē·B=4gabEaBa 电磁场的类操件 $F_{ab}F^{ab}=0$ \iff $B^{+}=E^{+}$ 瞬时观者测得的 E和已版相等,很此政 Fab*Fab=0 ⇔ Ē·B=0 [河知理的阳电磁波的基本特征] **紫光电磁场是平值时空的平面部磁波在弯曲时空的推广**. 8.4.2 Reissner-Nordstorm A..

·对预聊标组 VaFab=0

VraFbc7=0 助做資稅以 > dF=0 即 3A s.t F=dA

 $\underline{F} = \underline{F}_{CabJ} = F_{ab} = A\underline{A} = (1+1)\nabla_{Fa}A_{bJ} = 2\partial_{Fa}A_{bJ}$

74号4子的复数

青茅杰球对称带电星体外部时至11行线和 ds*=-e2~(")dt*+e2*(")dr*+ r2(d02+sin*0de2*) 特求(M.gab, Fab(Aa)). Fau = 2 2[AAv] = 3MAv-3vAm 符合球对称带电影体产生的电磁切Fub是静态球对初的: ② 电磁气势 A。在{t,r,0,4}坐标下的为量 A。与坐标t,0,4无关 ② 没有切开球面的分量 A2=A3=0 Aa有规范围性: 设任意兴数 V=X(r) 则 Ãa=Aa+VaX与Aa对应于相同Fab $\widetilde{A}_{i} = \widetilde{A}_{i} \left(\frac{\Delta}{\lambda r}\right)^{a} = A_{a} \left(\frac{\Delta}{\lambda r}\right)^{a} + \left(\frac{\Delta}{\lambda r}\right)^{a} \nabla_{a} \chi(r) = A_{i} + \frac{d\chi}{dr} \quad \text{if } \frac{d\chi}{dr} = -A_{i} \quad \nabla \int_{i} \widetilde{A}_{i} = 0$ ⇒ Fab化筒至一个独立分量 Fio = O1 Ao = dh dr (Fo1=-Fio) VaFAD=0 => 0= FM1; = FM1, + アルの Fのリナアルの が発見に符アル= 1/9 38 = 1/131 280 FM', = 一方 3m (1-3 Fm) + ["(m) Fm] = dr (13 F1") = 0 其 g=-e2(m+) r+s m20 $\frac{d}{dr}(e^{\alpha+\beta}\gamma^{2}F^{1}^{\circ}\sin\theta) = \frac{d}{dr}(-e^{(k+\beta)}\gamma^{2}F_{10}\sin\theta) = 0 \qquad F^{10} = F_{10}g^{11}g^{00} = F_{10}e^{-\lambda\beta}(e^{-\lambda\beta})$ 电磁场方程 dr (e^{-(x+1)} r² F10)=0 通解为 F10= C2 e^(x+1) (3为标分常数 满股辣斯韦洛维的电磁场表达式 Fab=-鱼cath (dt)a / (dr)a · 对于爱国斯坦河科 Rub-IRgub=8xTab 电弧场限功铁量Tub 的迹 T=gab Tab-0 故稀遍年 R=0 ⇔ Rab=8元Tab FcdFcd=Fo1Fo1+F1oF10=2F1o39"g00 FocFoc=Fo1Fo19" T11 = - = - = e- = F16 R1 = - a" + a' p' - a' + 2r" p' R22 = - 6-28 [1+r(a'-p')]+1 T== 1/87 12 F12 e-2(048) $R_{33} = -\frac{1}{5}e^{-2\theta}[HY(\alpha'-\beta')]-I\int sin^2\theta$ $T_{33} = \frac{1}{8\pi}Y^2F_{10}^2e^{-2(\alpha t\beta)}sin^2\theta$ $R_{00} = 8\pi T_{00}$ 又 $\alpha' = -\beta'$ $R_{22} = 8\pi T_{22}$ $(re^{2\alpha})' = 1 - \frac{Q^2}{r^2}$ C为秋分常数 $R_{11} = 8\pi T_{00}$ 通过重進七所得 $\alpha = -\beta$ $R_{33} = 8\pi T_{33}$ 解得 $e^{2\alpha} = [+\frac{Q^2}{r^2} + \frac{C}{r}, e^{2\beta} = ([+\frac{Q^2}{r^2} + \frac{C}{r})^T]$ RNHÃU ds2=- (1+ Q1+ C) dt3+ (1+ Q3+ C) dr2+ r2 (d02+ six 8 d402) 电磁场 Fio = Q

Y因分 $\frac{Q^2}{r^2} \ll \frac{C}{r}$ 线元重以为 $ds^2 = -\left(1 + \frac{C}{r}\right) dt^2 + \left(1 + \frac{C}{r}\right)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2)$
时空度规定与施瓦西度规近似-数 C=-2M.
星玤可视为巨电荷,外部电场 Fu 为其电符除以r' — Q为星球电符
RN開: 度初 ds=-(1-= (1-= (1-= (1-= (1-= (1-= (1-= (1-
电磁切 $f_{ol} = -\frac{Q}{r^2} (dt)_a \wedge (dr)_b$ $A_a = -\frac{Q}{r} (dt)_a$
描述质量的M,电荷为Q的静态环对称星体外部的时空心可
igic电磁的 FabFab=Fo1Fal+F1oFla=2F1oF1ogaag"=-2 12 14 +0 为非类别电磁场
静态观者G测RN解fab所得电场和磁场分别是静电场和零
P_{f} : 静态观省G的 + 速 $Z^{\alpha} = f^{-1/3} \left(\frac{2\pi}{r}\right)^{\alpha}$ 其中 $f = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}$ [4劃] 工事本 $Z^{\alpha} Z_{\alpha} = -1$]
室间 政 $(e^2)_a = f^{-1/2}(dr)_a$ $(e^2)_a = \gamma(d\theta)_a$ $(e^2)_a = \gamma(d\theta)_a$
G测得的电场 Eo=FabZb=-B(dt)a/(dr)b(益bf-1/=-B(dt)a(dx)b-(dr)a(dt)b](益bf)
$E_a = \frac{a^2}{r} \int_{-K}^{-K} (dr)_a = \frac{a^2}{r} (e_i)^a$ 由纯特 激发的静电场
This Ba = - Fab Zb = - 1 Fcd Ecdab (= + 1/2 (lo) = f-1/2 (= + 1/2) +
= - 1 0 [(e) (e) - (e) (e)] Ecdab (eo) cd 反对称.
= - \frac{a}{r^3} (e_0)^6 (e_0)^6 (e_1)^d & Edab = - Ebigad = 0
Birkhoff度理指广:爱因斯坦方程的电磁真空球对初解必为RN解

§8.5 轴对称度规简介 Axisymmetric metric 枯对酚酚 Cylindrically symmetric metric

坐标系基カ (χ°, χ', χ², χ³)= (t, ρ, φ, ε)

轴对形时星存在具有活枪积分曲线的类室Killing失量的中心=(六)a 稳态轴对形解特例:Kerr解

村对称时室具有反映轴对移性的Killing矢量的 十°=(亩)°和反映沿对移轴的平移不变性的

§8.6 辅对移传规简介 Plane symmetric metric

Def L 时室接规引动物为 犅叶粉的 (plane symmetric), 老其等接规群 Gi 含有-1与E(2) 目内的3群 Gi

且G3的所有轨道都是2维和

E以对应的 Killing 矢量均有3个 (家)。(家)。(家)。= -y(家)+x(家)

1951年 Taub证明定理:

真壁造斯坦方移的平面对酚解 ① 静态度规,其烷形成为 d= -----(-dT+dE)+(HK)(dX+dY*)

文 ②空间均匀度状, 其线元形式 ds²= -1 (-dT²+dē²)+(1+kē)(dX²+dĬ²)

3个KillingK董坳可以给出第4个KillingC糧坳(計)

① (元)°, (元)°, (元)° 为墅(illing)、(六)° 为类时(illing)、量功 → 静态. T为类时生标

② (六)°, (六)°, (六)° 为类坚Killing失量切 ⇒ 时空是空间均匀的 (spatially honogeneous)

Z为秦时生杨(灵)°为娄星Killing乐量均 在空间的对新(T,X,Y)上有种种种.

施瓦西库机中的多数Mə阜库机族

 $z = k^{4/3} (1+k\xi) \quad \chi = k^{4/3} \chi$ y=k**/ (k和)消息 Tawb医规中的常数k 可由生标变换 七=p³3T

⇒ 特色 ds2= z1/2 (-dt2+d22)+ 2(dx2+dy2) 室面切り ds2=-を1/2 (-dt+dを)+を(dx2+dy2)

考虑电磁真空曼因斯坦多程的平面对称解(M. Gab, Fab)
野术阳对秘电路场 乂xi Fab=○ 3.°为反映平阳对轮性的3个Killing失量场
毕面对粉(semi-plane symnetric) 只有早移对形性沒有旋转对形性 工劣√Fab=0
\$s.7 用标案计算曲率标量 \$8.7 Newman-Penrose 形式
§8.8 用NP形式书解爱因斯坦-麦克斯韦志柱等例
计算曲率:①坐标基底法 ② 正刻→标案法(非坐标基底法) ③类光标架法
克瓜符 联络1-形成
·

38.10 生物条件,广义相对论的规范自由性
8.1 生物制 Coordinate conditions
真暖因斯坦方程 Gab=0 造丝核际的量新程 Gym(x)=0 从,v=0,1,2,3
$G_{\mu\nu}(x) = R_{\mu\nu}(x) - \frac{1}{2}R(x)g_{\mu\nu}(x) = 0$ 为关于标识数 $g_{\mu\nu}(x)$ 的偏约为方程组
g灬,G灬关于灬ν对松 ⇒ 1°1代数独立的1腳做历方程序解10个独立函数
曲率强量Rabed 满肢比定基恒等式 V[aRbc]de=0 => VaGab=0 VaGab=0
4个关于**数分***(x)的物为恒等前 G^**;**=0 导致独立群权有6个
苦凼数组至w以是吞难组Gw(x)=0的解,则坐标万量gw+对偶坐核基矢(dx*)a=度概场gab
gab=gau(dxx)a(dxx)b 换生标签(xx)下的 g'pr(x')也是G'u(x')=0 的斜 一两组不同的斜
边界条件+活性组能确定作于的时空几行发动,但不能确定生标条下的分量的(相差一生标变换)
例如: 海転時 {t,r,0,19} gm(r)=-(1-2M) gn(r)=(1-2M) Ju(r)=r2 g33(r,0)=r3in
史给问性生标系 $\{t',t',\theta',\phi'\}$ $t=t'$ $Y=Y'\left(1+\frac{M}{2T'}\right)^{2}$ $\theta=\theta'$ $\phi=\phi'$
$ds^2 = -(1-\frac{2M}{r})dt^2 + (1-\frac{2M}{r})^2dr^2 + r^2(dt^2 + sh^2 \phi d\phi^2)$ 满战相同边界条件(环环机)
$= -\frac{\left(1-\frac{M}{2r'}\right)^{2}}{\left(1+\frac{M}{2r'}\right)^{2}}dt'^{2} + \left(1+\frac{M}{2r'}\right)^{4}\left[dr'^{2} + r'^{2}\left(d\theta'^{2} + sin^{2}\theta'd\varphi'^{2}\right)\right]$
[广灯城性为污秽坦提供3个作曲度] ⇒ 附加污秽(生析辨)以指定具体生标款
- × ×
[广对城性为5种坦提供3个作曲段] > 附加5柱(生标条件)以指定具体生标系
[广灯破性为5階组提供3个作曲度] → 附加5程(生标条件)以指定具体生标系 1、高斯法生校条件 goo=-1 goi= 0 (i=1/1/5) 时轴正成。
[「対抗疫性力を発生提供341日由長」 → 附加を軽(生析条件)以指定具体生物な 1、高斯法性核条件 goo= - goi= O (i=1,1,15) 町軸正庆。 2、混和性核条件 gab∇a∇a√a= O (σ=0,1,1,15) ⇔ gam [ハル=0 満足 gab∇a√a√af=0 的色数 f 移力循和函数 (harmonic function)
[广灯板性から発出提供34付日車を] → 附から程(生析条件)以指定具体生标本 1、高斯法生校条件 のの=-1 のい=の(i=1いら) 町軸正文。 2、 消配生标条件 ターク マーク (σ=0、1・2・2) ⇔ タルアルーの
[广文竹楼性为5裕坦提供34个自由度] → 附加方程(生析条件)以指定具体生标系 1、高斯法生核条件 另00=-1 月01=0(1=1,12)时租政。 2、消私生标条件 另四个区域 (5-0,1,213) ↔ 另四个个人如=0 满足 另四个区域 (5-0,1,213) ↔ 另四个个人如=0 — 挑选特殊生标系以消除由爱国斯坦广义协变性导致的 3加(x)不确定性。
「「大けったなりまたりまた。」 今日由後] → 阿かった (生析条件) 以指定具体生标ないる。 「高斯法生核条件 る。。」 る。」 の (i=1,1,15) 町軸正成。 2 消か生标条件

8.10.2 TX相对论的规范自由性 Gauge freedom of GR. Claim 沒中:M→M長級的同胚, Rab [g]是真规 gub 的里有张量、则 ぬ (Rab [g]) = Rab [為g] φ_{*} Gab[q] = Gab[φ*g] Rp Gab[g] = 0 ⇔ Gab[φ*g] = 0 gab= 4 9 m gab是Qab=O的解组仅当在gab也是解,但如gab+gab [边界条件只能把爱国斯坦方形的解]如确定到相差一个独词同胚的程度,两者描述相同的局域时至几乎] 被动语言:"诸导忠-1*生肺变换". 对于流移 M 私 Ñ 存储物市阴丘映射 中· M→ 所 则两者修得不能肝修 对于时星(M·Jab)和(M·Jab)存在微项同比映射中:M→M且q·Jab=Jab 则两者修得不能再像 (M.g.w)能描述的现象和可用(M.g.w)等价描述: (m̃.g̃b) (Migab) HPEM有 uª, vbe Vp 对应 \$(p) E所有 \$*ua, \$*vbe Va 内秋相等 gab|p NaVb = (px gab)|p NaVb = gab|q(pxN)a(pxVb 张章秋相等 (奂U)ª(奂V)b= 奂(UªVb) ··· (M.gab)与(州,蜀山)在1円上等价 考虑 M=M有两个存规 Jab. Jab=中* Jab (中》\微分引任) (M, gab, gGb) Up Vb (0xV)0 (0xV)b 若(M,gm)与(M,gm)等价则 gmlpUaVb=(只g)ablom(如U)a(如V)b 而非 gable uarb=(4, g)able uarb 同时的性质一多地唱戏。 度规则由描述中的时间,有品描述中的时间 > 两种新 结度规场 gab 即确定一种几何/结定几乎确定度规场的一个等价类 gab }. [江河的定义]. 等价类中的原规场相差个微分同胚 gub → A gub 不改变几何这一性板剂为广义相对论的规范自由性(gauge freedom) gab= φ* gab 松为枫范曼扶 (gauge transformation) [孙变物理字版的变换]

相应的不变性(自由性) 称为规范不变性(自由性)

0	类比电动力等-4结Aa的视范不改变电弧场Fab				
0	拓限线性划力论的概范变换 [↑×相对论中执范变换的无穷小形式]: gab='lab+Yab				
	视热要换 Yab → Yab = Yab + da 3h + da3a				
-	度概差界 gind-gind= au的+ausa 31入朱重场入《和宗教七使多》= th (t为-所外重)				
	= t(dahb+doha)= tJn Nab 2-Nab=0				
	李智氏心は Inlab = xoclab + Noboaxo+ lacobxo = danb+ dbna				
	ユハル= エハ(Jab-Yab) = ユルJab (第:政为=阿介量) = 50 = (45*gab-Jab)				
	秋 Jab - Jab = t シスJab = 中で Jab - Jab = Jab = 中で Jab				
	线性引力抗视范曼挨厅的新真规 gub F 隋 真规 gub 在一级近似下火差到一个微分同胚				
	⇒ 结论:设物理理心由流码M设装上的芜干个张量场下"抽述				
-	则(M·T ^{··)})与(M·T ^{··)})横述相同物理当B双当存在徽河闸胚 φ:M→M 使干(i)= ぬT ⁽ⁱ⁾				
	·				
-					
-					
-					
-					
-					
-					
-					
-					

	第1章 施瓦西时宝 Chapter 9. Schwarzchild Spacetine					
	89.1 港西西町星的洲世线 Geodesics in the Schwarzchild spacetime					
$Y(r)$ 为禁时(判测地线 (熱时) T为固有时 (类形) T为信射参数 $ \frac{Y(r) 参数表达式\Upsilon(r)}{V^*(s) * * * * * * * * * * * * * * * * * * *$						
						+(計器+(計)4光+(計)4光 辨析τις, γιις, θις, γιις) 椒酸及其数耦合
						&利用Killing 失量的简化字解
	1°利用施瓦西时室的球对称性简化测地线的生标表示 Y(I)和赤道面上.					
	Claim 7-1-1 设Y(I)是施1项时空的-条类时效类光测地线,则总可选择施2项坐标(使Y(I)的巨子					
Pf: Vpe Y(t) 过户5的种道球面分 C 过户5的等七面 至上						
	测地线 Y(15) 与 工,不能正安 (保持正安即为静态观者世界线) 3=(数/ 下心.)					
	故户与的个连Ua在工户上的投影的和。					
① 若陀的P有切了Y的量1/4,1/4)决定Y上的唯一测地线 - 大圈.						
	从此大圆为赤道定义 Y 上的 對标 θ , Y θ ψ θ φ θ φ θ φ θ					
9	着声的P。沒有切于Y的量M(rco为往们测地线),则选YL任过产的大圈为靠直					
	⇒ 由于诡瓦西线元ds'在变换 0→元-0下的不变性作证用**牛环关于市道的对称性					
则利用携带法将 Υ L的 θ, γ 生标推广所得的施压的生标系 {t, r, θ, φ} 使满足 ι' 整条 γ ι' ι) L θ (p)= Ξ						
					建证明: $M=2$ $\frac{d\theta}{dt} + \frac{1}{r} \frac{dr}{dt} \frac{d\theta}{dt} - \sin\theta \cos\theta \left(\frac{d\phi}{dt}\right)^2 = 0$ 关于日口的2州常徽方程	
	满风初始件θ(p)=즉, 器 p=0的电静即是Θ(c)=至					
	東义 心:=-gob(計)*(主) = { 1 对新洲地战 0					
	$-\mathcal{V} = g_{0b} \left(\frac{\partial}{\partial \tau} \right)^{a} \left(\frac{\partial}{\partial \tau} \right)^{b} = g_{00} \left(\frac{dt}{d\tau} \right)^{a} + g_{11} \left(\frac{dr}{d\tau} \right)^{a} + g_{32} \left(\frac{d\rho}{d\tau} \right)^{2} + g_{32} \left(\frac{d\rho}{d\tau} \right)^{3}$					
	$-\mathcal{V} = -\left(1 - \frac{2M}{r}\right) \left(\frac{dt}{dt}\right)^2 + \left(1 - \frac{2M}{r}\right)^{\frac{1}{2}} \left(\frac{dr}{dt}\right)^2 + \gamma^2 \left(\frac{dV}{dt}\right)^2 \qquad \text{Sin} B = 1$					

施晒时中的两个Killing漫场(云)、(氙)、+浏地线切失从=(完)。⇒ 从3.为在测地线上外数 東义州地域YII)上的所作量 E=-gab(計)(記)=-gaodt=(1-型)dt L:= gab (34) (5) = g33 dv = r2 dv $-\mathcal{L} = -\left(1 - \frac{2M}{\gamma}\right)^{T} E^{2} + \left(1 - \frac{2M}{\gamma}\right)^{T} \left(\frac{dr}{drc}\right)^{2} + \frac{\mathcal{L}^{2}}{\gamma^{2}}$ $r(\tau)$ 的所常數方程。 \Rightarrow 本件 $r(\tau)$, $t(\tau)$, $t(\tau)$, $t(\tau)$, $t(\tau)$, $t(\tau)$, $t(\tau)$ $t(\tau$ ·讨论治测地线守恒的物理量E,L. Ua=(壳)* 至(壳)* pa G簡於理希·双港G对自由版与微当时当地测量(|oca| measurement)得到的自量值 Elocal = - Zapa = - gab Zapb 4动量pa= nUa 4速 za= vi(去)a 4刻子 でなる=-1=gasをなるb= x-gas(歌)a(歌)な(歌)な 可管 X=(-3436) た E:=-30 1人 = gab (ま) (ま) (ま) =-gab かる mpb= x theory 无家圣处 r→∞ g∞=-| そªをª= x--g∞=-| → x|∞=(-5³36)-x/∞=1 E> LE Flech 一常量巨斛科为无限远的静态观者对该些攸当时当地测量所得的单位预量的能量 在自由族自己的过程中守恒的是它而非已当。 引力的的能量是不可定域化的 g E为自由版与智单位质量的总能量(包括引力势能) 运动过程中引力对自由质与做功 「Elocal为静态观省(校当时当地)测量阶得的能量(不包括沙势能) 类光测地线 Y(v):E解释为粉点能量×h⁻¹ P^A G静态理程· L:= gab (計)^A (計)^b= r² dr U^A为自由版EY(T)在PE的个连,其连为U^A PS的生标基外一化 ⇒ PSTD空间 Vp的一个正成了一个标架。 $\frac{P}{|\gamma_{(c)}\rangle} (c)^{\alpha} = (1-\frac{2M}{r})^{1/2} (\frac{2}{2r})^{\alpha} = z^{\alpha} \qquad (c)^{\alpha} = (1-\frac{2M}{r})^{1/2} (\frac{2}{2r})^{\alpha}$ $(e_3)^a = \frac{1}{r} \left(\frac{2}{2\theta}\right)^a \qquad (e_3)^a = \frac{1}{r} \left(\frac{2}{2\theta}\right)^a$ 对肠标件 (e)a= $\left(1-\frac{2M}{r}\right)^{1/2}(dt)_a$ (e)a= $\left(1-\frac{2M}{r}\right)^{1/2}(dr)_a$ (e)a= $r(d\theta)_a$ (e)a= $r(d\theta)_a$ 欧战空间质导角动量 了:=アメア ⇒ 弯曲时空中自由顶空角动量 ja:= €acrbpc= €acmVrbUc 其中伏住 Yb=Y(e1)b 子神 pa=Ymua, Y=-UaZa

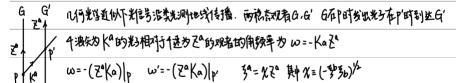
町测地线坐桥巷达Ϋθ似=至,故U°的BG量为O

由于(ei)沿径何洞和型秋性纸,故以的谷和rg量对了《无贡献

=) ja= Ear(e) mr u3(esf

 $j_{a} = g_{\alpha i \dot{\beta}} r \gamma m u^{\dot{\beta}} = g_{\dot{\alpha} \dot{\beta}} r \gamma m u^{\dot{\alpha}} (e^{\dot{\alpha}})_{\dot{\alpha}} = -r \gamma m u^{\dot{\alpha}} (e^{\dot{\alpha}})_{\dot{\alpha}}$

 $= \left| \operatorname{mr} \left(\mathcal{N}^{a} - \Upsilon Z^{a} \right) (\ell^{3})_{a} \right| = \left| \operatorname{mr} \left[\mathcal{N}^{a} \cdot \underline{\underline{r}} (d e)_{a} \right] = \left| \operatorname{mr}^{3} \left(\frac{3}{3 \mathcal{T}} \right)^{a} (d e)_{a} \right| = m \left| r^{2} \frac{d e}{d \mathcal{T}} \right| = m \left| L \right|$


- 韓上的绝对值是单位质量自由质色相对方静态参考系的3角动量的大小

类光测地线 Y(t): L解释为光纸油量×h⁻¹

§9.2 广义相对论的经典实验笼证 Experimental Tests of GR.

9.2.\ 31为红褐 Gravitational Redshift.

·稍忘时室的引加移

田clain 4-23 Ka3a在光3世界线 (测地线)上为常数 (Ka3a)|p=(Ka3a)|p/

$$\frac{\lambda'}{\lambda} = \frac{\kappa'}{\kappa}$$
 $\frac{1-\lambda W/r'}{1-\lambda Wr}$ $k'>r'>r'$ 恒星附近的光发射至接吸着 $X>$ 入 港坡東太平红移

纯起因于引加了(时至勇曲)的红衫现象形为引加现 (gravitational redshift)

X=(-多多)从初始的。

相对环睛	ī a-	<u> </u>
מלחבן עבו		λ

观测验证: ①大阳价发出的别相对红粉量约为2x10°6

⊙白矮星来览的红袴:1960年 Bound , Robka 壳棒酸切红褐实验

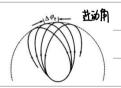
移斯堡分放应(Mössbauer effect)特定晶体对特殊频率的/射线做选择性高的天瓶取帐

編勒效应蓝榜5引於移抵消

9.2.2 水层近层色进步 Perihelion Precession of Mercury

牛顿村 一行星的轨道是以树的一个信息的椭圆

观测结果一 /惺轨道不闭后,相邻周期的近日5存在微、改变


积累放应后种间的长袖绕太阳有缓慢转动 — 近近进动 (precession)

水尾近日6的进动率约为复世纪5boo"可解解 555]" 无法解释 43"[汶相对论效应]

模型、水湿是在由如阻造成的多曲时空中的自由质点,忽略其自身引力作用

方法:对施瓦西班里的类时测地线的近似计算

结论: 水层的轨道不是闭合曲线, 其近日与进动率为每世纪45"。

计算: 全郑H和水星的质量汤别为M和M

□中顿引力论 水影|为势能 Um=-Mm 轨道保持在赤道面上 Ue=0

$$Ur = \frac{dr}{dr}$$
 $U_{ij} = r \frac{d}{dr}$

和械能守恒 $A=\sum_{m}u^{2}+U(r)=\sum_{m}u^{2}+U_{p}^{2}-\frac{Mm}{r}$ $U_{r}=\frac{dr}{dr}$ $U_{\phi}=r\frac{d\gamma}{dr}$. 待求 r(t), $\varphi(t)$.

⇒ 变量 r=r(4) 单位质量的动量 L=ruy=r² d4

两些成 $\left(\frac{dt}{d\phi}\right)^2 \frac{1}{h} = \frac{r^4}{nl^2} + \frac{A}{ml^2}r^4 = \frac{1}{2}\left[\left(\frac{dr}{d\phi}\right)^2 + r^2\right] - \frac{M}{12}r^3$.

$$\left(\frac{dN}{dq}\right)^{2} + N^{2} - \frac{2N}{L^{2}}N^{-} \frac{2A}{mL^{2}} = 0$$

阿边对中等
$$\frac{d\mu}{d\psi} \left(\frac{d^2\mu}{d\psi^2} + \mu - \frac{M}{L^2} \right) = 0$$
 { $\frac{d\mu}{d\psi} = 0$ 国轨道 $r = const$

C. Y.为积分常数

方移科 M(4)= 1 [1+ecos(4-40)] 不失報性 40=0 C= 1+ 2AL*

(MU平为e的 風報裁対る程 MU4)= M(1+ecosy) Ose< | 執道が科園

回似相对论

 $-W=-\left(1-\frac{2M}{r}\right)^{-1}E^{2}+\left(1-\frac{2M}{r}\right)^{-1}\left(\frac{dr}{dr}\right)^{2}+\frac{L^{2}}{r^{2}}$ 对于类的汉地线 W=1 $L=r^{2}\frac{dV}{dr}$

肠边字來 $\left(\frac{dr}{dr}\right)\left(1-\frac{2M}{r}\right) = \frac{r^4}{L^2}\left(1-\frac{2M}{r}\right)$ 解 r=r(r) $\left(\frac{dr}{dr}\right)^2 - \frac{E^2r^4}{L^2} + r^2\left(1+\frac{r^2}{L^2}\right)\left(1-\frac{2M}{r}\right) = O$ 对我相 $\frac{GM}{C^2} \stackrel{\triangle}{=} 15 km$

 $\langle A = \Gamma^{\dagger} \rangle$ 并对 $\langle F \rangle$ + $\langle A \rangle$

慶牧近似射 ル (4)= 1/2 (1+ecos4) 整~ル

代入3程本例第二项可得一级近似解从(4)的方程 $\frac{d^2M_1}{dV^2} + M_1 = \frac{M_1}{L^2} + \frac{3M_2}{L^2} \left(\frac{1+2ecos}{2} + e^2 \cos^2 4 \right)$

-级近以前 $M_1(\phi) = \frac{M}{L^2} \left[1 + \exp(i\phi) + \frac{3M^2}{L^4} \left[1 + \exp(i\phi) + e^2 \left(\frac{1}{2} - \frac{1}{6} \cos 2\phi \right) \right]$

使水星偏离闭合轨道,出现近距进沙.

当只天心积累就应时 从(14) ≥ M [1+e(usy+ →M ysiny)] M = H (GM) «1.

 $\frac{1}{2} = \frac{3M^2}{L^2}$ coser = | siney = Ey cosy + Ey siny = (coser) cosy + (siney) siny = cos(y-ex)

则 元()=从(4)= M(1+eas(y-E4)). 近(E)最小 从數、Cas(y-E4)=0

III Y=0, $Y=\frac{2\pi}{1-\xi}$ ≅ $2\pi(1+\xi)=2\pi+2\pi\xi$.

少尾亚山鱼在圆周期内的进动角 ΔΨρ=2πε= 6πM² => 进动率 43"/世纪

9.2.3 星光隔析 Deflection of Light

远地星射到地面的光线经过太阳附近受太阳引力切影啊而弯曲.

 $-W=-\left(1-\frac{2M}{r}\right)^{-1}E^{2}+\left(1-\frac{2M}{r}\right)^{-1}\left(\frac{dr}{dr}\right)^{2}+\frac{L^{2}}{r^{2}}$ 对于类别性线 W=0

肠边棒 ($\frac{dr}{dr}$) $\left(1 - \frac{2M}{r}\right) = \frac{r^4}{L^2} \left(1 - \frac{2M}{r}\right)$ 解 r = r(r) $\left(\frac{dr}{dr}\right)^2 - \frac{E^2r^4}{L^2} + r^2 \left(1 - \frac{2M}{r}\right) = 0$

クルミア 弁对Yx号 dxx +ル=3Mル

1ºM=0 阻断を 計動解か M(4)= tsin(4+x) しいまかが消数

谈φ=0时 粉在雅色 M(o)=10 则α=0 M(q)=15inq
全X=rcosy y=rsiny= Lsiny= 1=常数
$\Gamma \in (0, \infty)$ $\Psi \in (0, \pi) \rightarrow \Re \in (-\infty, +\infty)$
光》的空间轨迹是一条直线
2° M\$0
代入る程を例 う特-鉄近似解 从(4)的方程 - <u>オブ、</u> - + ル(4) = 3M ル = 3M しらいで
-级近似的 μ(4)= tsinφ+ M(1-cosy)2
Ψ=0时 M=0 Y=∞ 萬大阳飛远 恒星视频
ψ=π.时 从= 4M 岩岩 π+β的方向克高太阳 r=∞ 从=0
4= TC+ P M= - + Sin(TC+P) + M [1-cos(TC+P)]2
$= -\frac{1}{L} \sin \beta + \frac{M}{L^{p}} \left(\left(+ \cos \beta \right)^{2} \right)$
0 ≈ - t β + th → 偏析角 β = th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
し最相为太阳特征 β= 1 GM = 1.75" 最大 建 偏析 角.
观测验证:比较层划被太阳胸析时恒星视位置与地球转至太阳分侧恒星真实位置。
视住置一日全食 理论预期值的1·13±0.07倍和0·92±0.17倍
不完定支持广义相对论:牛顿引力论:预言尾光·襁本阳(偏析),偏析角约为云GR预言值
·

\$9.3 详对称恒星及其演化 Evolution of a spherical star

9.3.1 静态球对初恒星内部解 Interior Solutions of a static, spherical star

静态+球对松 → 施瓦西生杨松下层规 ds²=-e²A***dt²+e²Bu*)dr²+ r²(dθ²+sin²θ dψ²).

星体内部物质的积作理想流体 能动纸量 Tab=(ρ+þ)UaUb+þgab

静态星体 = 随动观看可看作静态观看 4速以平行于约=(元)*

由住山-Ualla=-1 3º3a=J..=-eA 故 Ua=e-A(計)a Ua=-eA(dt)a

Tab 非零生标 10 = Tab (六)(六) = (++)e2A(-1)(-1)+p(-e2A)= pe2A

Gab=8れてか > ペルーシスタルー8れてかり有る个独立方程:

@ 8 rp = 6->B (>4(r+ +)-) - 1-,

3 2 = e-28 [A"-A'B'+A'2+ (A'-B')r]

① 秋场 Yexxxxx=Y-2m(r)+C 其中m(r)=4元 for p(x) xdx, C为积场常数

卷C+0 r→0时 $g'' = e^{-2B}$ →∞在星体中M不合理 故 C=0 $g_{11}(r) = e^{-2B(r)} = \left[1 - \frac{2m(r)}{r}\right]^{-1}$

设墨体P铅为R r>R应为施丽西取解 + 内外医枕在墨株插 r>R 连续

 $\overline{y}_{\frac{1}{2}}^{\frac{1}{2}} g_{11}(R) = \left[1 - \frac{2m(R)}{R}\right]^{-1} = \left(1 - \frac{2m}{R}\right)^{\frac{1}{2}} \qquad M = m(R) = 4\pi \int_{0}^{R} \rho(r) r^{2} dr$

Note: g间云中3维国有体元 &= Jh drndonde= [1-2mm] Jx zinodrndonde

[P(r) =] p(r) [1- \frac{2m(r)}{r}] \frac{1}{r} \gamma^2 \sino dr \land d\land \land = 4\pi \int_0^R p(r) \left[1-\frac{2m(r)}{r}\right] \frac{1}{r} \right \right dr \dim M.

P(r)是内静态观省做当时当他所得的能量密度,不含引力的贡献[引力功能的非键对性].

M是施瓦西时空的总质量(总能量),包含31方势能 [浙亚平直时至可以建义总能量].

M(r)<< Y

⇒ dA = m(r) = do p为球对的情况的特殊分势, m(r) 为引力动强

A是牛顿引力势在静态球对於多出野空中的对应量.

牛顿近似 \$\text{def} \cong - \rho \frac{m(r)}{r^2} \ \text{+\width}\rho \rightarrow \text{\text{rep}}\rightarrow \text{\text{rep}}\rig

由此时记 时室概 ds=-e*A(r)dt2+[1-2ncr)]-dr2+r2(d02+sin20d02)

星体物质 Tab=[p(17+p(17]e)A(17)a(dt)a(dt)b+pgab

待孩数为 A(r), m(r), p(r), þ(r)

满场移为 dm(r) = 47.p(r) r2

 $\left[\frac{dA}{dr} = \frac{m(r)}{r}\right] \quad \frac{dA(r)}{dr} = \frac{m(r) + 4\pi pr^3}{r[r-2m(r)]}$

 $\left[\frac{dp}{dr} \approx -\rho \frac{n(r)}{r}\right] \frac{dp(r)}{dr} = -\left(p+\rho\right) \frac{n(r)+4\pi pr^3}{r[r-2m(r)]} + + + \frac{\pi}{2} \frac{\pi}{2} \left(equation of state\right) + + + \frac{\pi}{2} \frac{\pi}{2} \left(equation of state\right) + + \frac{\pi}{2} \left(equation o$

初始条件 Y=0 M(v)=0, A(v), Po=P(v)指读后对3个徵写/转从Y=0积/至P=0(星球表面Y=R)

佚证星环表面5环外戛°解的联结条件满足 e²A(R)= |-2M ⇒ po.决定A(r), m(r), p(r).

理想化的物态方程 ρ= const — 医造祛大的帕星的-级近似:mur)= 号τορr3

- 椒奶加汗 dp = - まれかれ 松分可得 P(r)=-まれかか+た

恒星神をト ロート(ア)=一章なかなトト アーラストウトア ト(ア)= まなか(アーナ)

- TX相对达下 车解 OV 話

遊玩西内解 $p(r) = p \frac{y - p(r)}{p(r) - 3y}$ 其中 $y = (1 - \frac{2M}{R})^{1/2}$ $\beta(r) = (1 - \frac{2Mr^2}{R^3})^{1/2}$

#M[x] > Po=P(o) = P = 1 1-34 M ↑ => Y N => Po↑ (de o)

下限 y==> P→∞ P-定 M越头的加越强率衡的压强梯度越大 → Po 起头.

中14/63线 无沉多大也无法维持平衡 M-定 R铋分柱更大的压造梯度越大

静台约聚隆长的比 (长)max=至

 $\angle R_0 = \frac{GM_0}{C^2} \approx 1.5 \, \text{km} \quad R_0 = \frac{7 \times 10^5 \, \text{km}}{R_0} = 2 \times 10^5 \, \text{km}$

藏势ρ的均匀密度星的最大允许质量 Mm= 축 1/πρ

⇒ 陽 p(r) > 0 员 of « o , 广 y相对论要实任何特征为R的环对粉静态星的质量在上限 专R.

9.3.2 恒星演化 Star evolution

削身:-团农取份的气体(速量)

%度较大外有较强引力以吸引更多气体,形成球对粉气团

任-薄球层内的任-体动所受相气圈的目别力指问环的 ョ气圈在自乳炸肝收缩,温度升高

3/>特能转化为热能 经典理想气体压强证式 p=kenT(ke为玻弧蒸雾常数,n为数滚废)

T个 压强 P个 任于薄瑛民町压线梯底部 导致的外阳力个·

向外辐射能量 同时继续不断收缩 (无内在能量)

⇒ 气国中心温度与聚度局到此从实验拉核协应 据烧鱼变氟解放能量维持高压强

医强梯度队标衡自3功,气团不再收缩达到预衡 → 形成恒星

坩:烷氢氮维特稳定

→ 星核内部氢铅蜜碱氦,温暖不炒以达到5炒鱼的核鞣变,氦球在的1/3作用下收缩变垫 問围薄层氦燃烧加制,星球外部膀外和冷却 ⇒ 形成红尾 (red giont)

晚午:氯磺吡缩导效高温高瓷可能达到些燃氧的聚变反应 烷氨变碳或氧 星核稳定 烧尽氨磺忙星核再头收缩, ⇒ 青栽棕(红色)炒的能量。

恒星晚年命运国质量而异。

1° **陡較的**恒星 M<1·3Mo

H

烟点

经典物理学: 辐射能量⇒无机制产生能量维持高温高压

量子物理等: 电光气压压弧 一电子服从泡剂不相缘像理,一个能级多能被两个自旋相反的电子击击

T=0时 电由基态设满至费料能Ef (fermi energy) 为完结符电站 (degenerate electron gos)

F随密度增大而增大.

电气中的电。具有超因不相容原理的动能,对压强和能量密度有贡献

引起的压强剂为导筒者压(clectron degenerate prassure)

星核在氢、氨烷烷之后再次收缩 造成的高密度电子具有费料能 Er》koT.

热运动对压强中的贡献《不相爱原理和高矿具有的动能对压强中的贡献,故类似于了一情况

星体内的电子可看并简单电子气,其简并压孤滔自引力,使星体保持平衡平不收缩。

- ⇒依靠电荷书压专臂的稳定坚体初为白矮星(white dwarf)
- ⇒ 輻射能量に温度下降至周围温度相等,成为黑矮星(black duarf)

天灾观测: 天搬星B是人类发现的第一颗白短星 ¥2:3000~20000 km.

庵皇比、钱嗯芘塞卡(Chandrasekhar)楼限 Mch≅1.3Mo M为剩余板重 初始版量<6~8Mo

2° 质量较大的恒星 1.3 Mo < M < 2Mo

不能通过核聚設於能

电子简析压无法维持是体平衡,星核内部继续发生核聚变仅应,烧成铁和镍 [结合最累的限子核]

星核在自引力作用下急削收缩,密度和温度急削增大

⇒高能光子将铁-镍原子核打碎成中>、庚子和轻核(光分裂)

电子和原子发生更多衰变产生中子和中微子 etp→n+le

中子服从泡利不相器原理,T20简种350的中3简并压抵消耗30万,使整件保持平衡而不收缩。

⇒ 依靠巾3简并压专臂的稳定医体初为中3星(newtron star)

暖地: 2Mo n n n n

极端专现· 高达核宠疾的宠疾、极強硌场(10°高斯). 极高速旋转,'''接近长速的高声速、内钟起流…

現流模型: 1931年 Oppenheimer & Volkoff

天文观测·1967年 脉冲星(pulsar)[周期性电磁脉冲信号的信号源]

一 旅转着的中3星.表面涉磁场导致磁偶极辐射,辐射的疝q性+中3星旋转 使地球收到电磁脉冲信号 要求是体半经很小且效象,表面引力强

· 星核在形成中3星之前的收缩非常急剧,秘为31分坍缩(gravitational collapse) 好简称 遏制星核自动作用下的温制收缩,何州的快热进使外展物质何四月飞出。 码成能量极大的超新显缘发(supernova explosion) 起新星爆发详细和判贴符研究, 星际体形成新代的恒星 1987年 SN1987a 151技哲伦云(16万5年) 中国:恒星光度大大幅加,抛射中微子(10⁴)带齿能量 [太阳私外帕毁>>中约3天文写],产生重冻 3° Nd M>21%的阻塞 和限制地缩为密度和曲率无限大的"舒",形成施瓦西黑洞 \$9.4 Kruska) 延拓和范瓦西黑洞 Kruskal extension and Schwarzschild black hole 9.4.1 时空奇兰(奇性)的定义 Definition of spacetime singularity 施瓦西生桥松下的施瓦西戛笙度枧 ds'=-(1-2M/)dt'+(1-2M/)'dr'+1'(db'+sim'0d4') Y=0 g=5gu t真义 Y=2M gu=∞ t喜义 战元=度规 gu+生标系{t,Y,0,0}. 能使gjun变得无意义或退化的三为负点(singularity) gjun在奇线存在奇性 (1) 展根张量 906在该区表现农好,是断生桥系选择不当而使906在该外的某些分量在该区表现不好 乔妫坐桥有鱼(coordinate singularity) 可遍过选择递当坐桥系消除。 r=24 (2) 庚稅強量 gub 本身在该位表现不好(奇希的) 初为町空有鱼(spacetime singularity) Y=0 **4连連流形™ ۲>0 被责写为(0,2M)和(2M,+四)** 时星(M, gas)要求流形M是竞通的, 度规gas是洛仑兹的, 在MLSG有意义且有一定程度的可微性(到C2) ⇒ 施瓦西性桥标的施瓦西奥度规仅限于 r>2M · 奇兰(奇性)概急与物理量的发散性聚切关联

例如·静电学 电场强 E= App F 在r=0沒有意义,即已在r=0三有意性。
广义相对论中奇Er=o不属于时至,不满足Jablp有意义
难些:非[义相对论理论 背影町壁馀足+物理场在幕町室鱼贷歡 > 物理场旁鱼
「义相对屯中 符易物和物理场双重角色的度规物元爲义》时至夺性
⇒ 夏亚的时室应除去时空专트 (M',gob) M'=M-{p}.
考虑闲的耳星(IP. 10)中的一条不可延伸的任-测地筑 Y(X),信射参数入6(~~,+~)
AMILEY, NYSS- & D IDT. (82-1) A M-1 M-503 1R' (1R". 200)
Y(X)的製物Y'(X), Xe(-0,2p)和Y"(X), Xe(2p,two) Y (incomplete good
(Migno)中-余不可延伸的测地线, 估射多数的取值范围不等于(-o.two), 则其被称为不完益测地线
限制:所污屯的町宝外须是不可延拓的,即不能遍过添加某些占使它变得更大 L排除人为挖法某些占
Def 1 若不可延拓时室中存在一条(或以上)不完备的类时或类别测性线,则称论为有新时室(singular spacet
物理喜义:不完备类时测地式这类淡测地试代表的自由下落观看实光方在有限时间内会在时空中消失。
补充:没有(环)不完备测地线,但有一条非洲地类时线,学好限、十分连大小有界,导致飞船内,深此曲线旅
观看经有限时间 会和"對消收,一奇和"壁。
·特上、由年发散性
O 由Rabed. gob和Pa构成的各种标量(R.RODPOD, Rabed Rabed) 及其多项式
其中一个量污不完全深了比较发散,则所至存在s.p. 曲半奇性(scolar polynomial curvature singularity)
② Ruch 及其协英号数在沿洲地战平移的任-标杂物方量中至沙有一个发散,则时至存在 P.P. 曲半奇性
S.P. 曲率奇性盛气于P.P. 曲率奇性 (P.P.④) (parallelly propognited curvature singularity)
时空是有船的 => 检查沿不给测地线有无曲半发散性; 具有5p.曲等合性或Pp.曲等合性
⊙有SP曲辛育性 ②沒有SP曲辛育性却有PP曲辛育性 ②沒有曲辛育性 e.g. Taub-NUT
趋于无易运时曲率才发散的时空不应视为奇和时空

9.4.2 Rindler 度规的坐标专트.

Coordinate singularity of Rindler metric

判断生桥专鱼的飞动性判据:找到一个生桥系使渡规在该条的分量在专业处表现正常

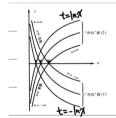
例: 2维kindler时空的链维粉科

gm在x=0外弦奇性.

{t.x}ト ぱニ-ダセド・ぬト 康规量的行列内g=-ダ在x=o处为蹇⇒ 矩阵(gm)无道, 唐规gm退化

X的取值范围为X>0或X<0(连通流形要求) 不失一般性限定 -∞<t<+00 0<X<+00

2维时星中每些有断类物向 ⇒ 红星的类测地线 可分两族


別可以斷定2=0为坐标专些.

苦某些熟现怕战不烧备,则应怀疑所纥町坚昆鼋胄鞍删去某些区域,未岌忒延拓邸军且分0是延拓后町空中-鱼

家现: YUN是Rindles时空的一条类状测地线,入为信射参数,切决 (六)°=(六)°++(六)°++(六)°++

由类性的。 $0=g_{ab}\left(\frac{2}{2\lambda}\right)^a\left(\frac{2}{2\lambda}\right)^b=g_{ab}\left(\frac{dt}{d\lambda}\right)^2+g_{ab}\left(\frac{dx}{d\lambda}\right)^b=-\chi^a\left(\frac{dt}{d\lambda}\right)^2+\left(\frac{dx}{d\lambda}\right)^b=\frac{t}{dx}=t\frac{t}{x}$

t=±lnX+C (c为歌场常数) t+lnx和t-lnx在每一内向和外门类光测地线上为常数

実体 V= t+hx U:=t-hx 即 t= 1(V+U) x=e1(V+U) x=e1(V+U)

 $ds^{2} = -e^{\sqrt{2}u} dv du \qquad 0 = g_{nv} = g_{nv} \left(\frac{2}{2}v\right)^{n} \left(\frac{2}{2}v\right)^{p} \quad g_{nv} \left(\frac{2}{2}u\right)^{n} \left(\frac{2}{2}u\right)^{p} = g_{uv} = 0$

(六)°,(六)°为美先乐量 U.V 孙如类光坐标、取值范围 -00<U<+00 -00<V<+

V,从并非(is朔专数、即值覆盖(-oo,too) 不能说明所有类别的线完备.

沼任翱渊地线100良常数E E=-gu(六)(六)=-gu+4 = 公台

以在任务何类数测域上为序数 将x.t依赖以V的杂代入且用 恭=恭贵 弘 如 dx=e'=t dv

今 V=e' 基础外间类测地线仿射参数

同理全 U=-0 县也为内的类测地线仿射参数

Rindler 时至并非不够好压时宝而是某个更大趼宝刑法某些区域的结果:

dUdV= ev-u dvdu (\$\frac{1}{2} ds^2=-dVdU 0< V<+00 -00< U< 0

庚规在ξU,νζ生核新的轉煙 gw=gvu=-」 在U,ν建出取值范围时表现良好

31)新生标U,V实现3对Rindler离视的解析延钝.

12= ev-u= -UV

类测地线在不同丝标》 姚祁州

柳海.

α=0 代表硅钴作定xt议中V=0,U=0 兩条直线 (α=0不隔于质龄生标坛)

生标志(专性) — 把原始生标条不适当地用到3些标域之外

殷新吃棉T,X T== 5(V+U) X=5(V-U)

 $ds:=dT^2+dX^2$ Rindlergau 是平直度规、与运的度视最多相差一个微分同能(月 π 行)

dst=-gtdttdgp 为2维润的时星的个子时室。 2维闰化时建 Rindler时星的最大链征。

小子约程序: $ds^2=-x^2dt^2+dx^2=-x^2(-dt^2+x^2dx^2)$ 定义x的函数 $x_*(x)$ $dx_*=x^*dx$

 $ds^2 = \chi^2 (-dt^2 + d\chi_A^2)$ $\hat{Z} V := t + \chi_A , U := t - \chi_A$ $\hat{R} \int_0^1 t = \frac{1}{2} (V + u) , \chi_A = \frac{1}{2} (V + u) - dt^2 + d\chi_A^2 = -dV du$

ds=-xodudu=-ev-u dvdu=-dVdu 其 V=ev U=-e-u

类时Killing、爱物(云)。即度规分量不含七简化寻找合适坐标系

9.4.7 声电视图图里的 Kruskal 延福 Kruskal extension of Schwarzschild spacetime

爱国斯坦方程的局域性(给没添码一些实任学员) 求解后不能对的房机所定义的流形整体性质

施瓦西真空度稅) $ds^2 = -\left(1 - \frac{2M}{r}\right)dt^2 + \left(1 - \frac{2M}{r}\right)^{-1}dr^2 + l^2\left(d\theta^2 + sin^2\theta d\phi^2\right)$ $\gamma_{>2M} \stackrel{\sim}{\to} 0 < r < 2M$

(大海南西川 はず = -(1-2m/) dt+ (1-2m/) dr' = (1-2m/) [-dt+(1-2m/r)] dr2] = (1-2m/r) [dt2+dr2]

令 V= t+ r* U=t-r* 即 t= 1/2(V+u) r*=1/2(V-u) 原 -∞< V<+00 , -∞ < U<+00

 $-dt^2 + dr_x^2 = -dvdu \Rightarrow ds^2 = -\left(1 - \frac{r}{r}\right)dvdu$

令 V:= ep U:=-epu βn/標數 则 0< V<+00,-00< U<0

 $dvdu = \beta^{-3}e^{\beta(u-v)}dVdU \Rightarrow d^{23} = -\beta^{3}\left(\frac{r-yM}{r}\right)e^{\beta(u-v)}dUdV \qquad e^{\beta(u-v)} = e^{-3\beta^{2}r} = e^{-3\beta^{2}}\left(\frac{r}{r-yM}\right)^{4\beta M}$

ds=-po(1-2M)exp(2mm) apm dVdU 有手 r=0, r=xm(选声 和消数)

⇒ ds>=-p> = dv dv du = ->m> e-= dv du 度规量在r=科如平再引 => 可以转配至Us0, U>0

全T====(V+U) X====(V-U)

池面原星接现在Kruskol 全标本 $\{T, X, \theta, \ell\}$ 的线话达式 $ds^2 = \frac{32M^3}{V} \in \frac{1}{M} (-dT^2 + dX^2) + l^2(d\theta^2 + sim^2\theta d\phi^2)$

限龄施瓦西町室的廷征孙为 Knuko|廷枢 【,X可炒取 1700 (デM-1)e デー=-T²+X²

时里(M、900)粉为时星(M·900)的一种和,老MCM且300/p=900/p. 4PEM

在华施晒图中,在竹装地线为±40°斜直线 [存在图子-dT+dK+]. 图中包兰都是一个海球面S*

Y=常数 对应于 X2-T2=常数 => 1维流形中的起曲面 - 旋转双曲面 .

特例:

1) 1=0 对应于X-P=-1 Kruska/延拓生标限制范围 r>o ⇔ X2-T2>-1

任-1-30的径向类以类时测地线都积备

3 Kruskal延拓是施瓦西时空的最大延拓 (maximal extension) r=0是埘空夼鱼,存在5P曲苇夼性

标量切 Rabad Rabad 在测地或上的值当1-20时趋于00

IP的一个 າ队

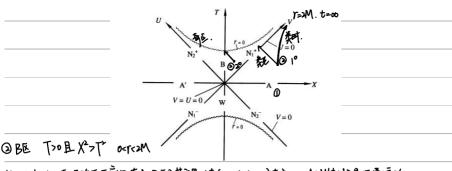
最大举杯的十维施瓦西时空的书科结构 IR*x S2

P) Y=2M 对应f X²-T²-O 纤维时空的两个3维类凝糊面 昨初分什形域:

O AE X20目X2>T (V20,U<0) 72M的时空成

延证的时空的 Ñ、 医规 乳、 红参介 T、X7 、 3 线元相差 个生标变换 原时的M, 展现gub桥系行门 J 在AE有相用度规场

以(A.g.,)为处花饮证,处花出 A.B. W.毛


选界以=0或V=0 ⇒ t=2M[InV-|n(-U)]→±∞

七在边界斜直线上没有定义 —— 施瓦西贷む在r=2M表现有异的原因

利用AE生标V,从与生标式rx关系良义B,W,从E中的生标七字 在产用于B,W,从E时用行,广着出结果13岁ds产

可以得到A.B.W.KE中生标T.X和七小之间的更换关系

 $T=T(t_{ir})$ $X=X(t_{ir})$ \hat{x} r=r(T,X) t=t(T,X)

Krushal 处怀委用庇瓦两庚现在A.BER其实界N,*(1=>M,t=∞)有定义,AUNI*UB是连遍流移

1° AG中任-5出发的内间的,指何未来的类为曲线不可避免地)穿越Nt进入BE/类时线允许以Nit为浙近面 2° BE中任一点出发的指向标准的类对该类为曲线都不可能够越Nt型AAE,都会挥入有点

=) Ni+是在进去出的单间膜:AE任行物体(光分)-旦寄拉他就不能返回A区,掉入壳点

B区初沟黑洞(black hole) Ni⁺ 粉灼事件视界(event horizon)

墨洞是-14维斯宝E竣(U>0.V>0) 事忤视界是-13维娄凝曲囱(Y=>M,+=+Ю)

③ A'E X<0且X²>T²(V<0,U>0) 1>2M的时空域性数5AE轮一致 NttRIE的新物件

A'与A沒有任何因来联系:任一类时以类光曲战都无法进入各区域 — 两个"互不关联的"宇宙

●WE T<O且X2-T2 O<T<>ME協物自計(white hole)

養先限曲面Nō·Nī 都是有出无进的单何F膜:WE任-指们未补的类可芬类光曲线都将穿越 No (Nī)进入ACA)区

每增为厚定前投下得到的海瓦西最大纯环 → 存在可能性很小 郑奶奶

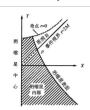
·最矮雅施阿昭的 Killing %是场

处环的的时室中4个/lilling绳多=(茄)* [静态性] 3°,3°,3° [环对粉性](堤缸环的星Killingt》

梦得乳BE5白洞WE由了Y<4M的从类时勤类空 易(之)*(主)*)。>0

时不施其他独立的类时Killing头童场,故BE与WE很静态时空区

(录)"硅糨峋ು珠义 = 利服轿藝(前)",(氙)"舔叭叭儿的类慢场


亥°=(み)°=+M[V(か)°-U(み)°] 政計時外独立Killing (造物 5°, 50°, 50°)

在A. P.EMS时,在B.WEMS程,在M.,N上级别

⇒ Birkhoff定理采取:若度机满足真宝爱田斯坦方程且具有反映环对初性的3个Killingtob, 则包含有歌外的第4个Killingt的多。,可以为类时(静态时空),类空(黑羽白羽),类别(新物界) 视价论时起而确定 9.4.4 范围西州生的范围红移面 Surface of infinite redshift in Schwirzschild spacetime 设制被条以外的静态观省区和G'的径行生标分割为Y和r'>r G内G'发出无 (1- 2) 対施加町主 ×=(1- 2) (1- 2) + 1 印 ここい 4 (0 lin z(r) = 00 起烟 Y=24 初为天假红移囱 (surface of infinite redshift) 某上任一宣发出的外向类光测地线看以能躺在视界上而不能到这G 施晒埘g中 R车个超响正实的类时Killing大量场分 → 饵个静态攀条 芗°=5°+þ(杂)° (β妫博数)(B选类时Killing 坊→ 无限多个轮流参考剂 -限情况 无限5移面对应于-30氪=0 作赖于所涉取的稳态参教。 9.4.5 敬凡图 Embedding picture.

9.4.6 球环枪悍的引力塌陷和施顿医别.

初始质量大于中3星质量上限的恒星、若不能在演化中抽出发的质量达到稳定,就会不断坍缩产生黑洞。

由Birkluff定理,是外时至少有施瓦西库规),是内时空由非真笔斛箱还 => AE5BE

当星体表面越过鄞州视界之花,就只能不断收缩压进亏压.

用施取四生标描写恒星中幅:星体建面与Y=州交于t=如(t在Y=M外及议) 但星体额观看在r=2M 国有时却是有限大.

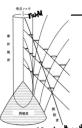
利用内闩Eddington坐标系{v,r,0,4}描述恒星坍缩成黑洞的过程 [覆盖AE和BE]

リニセナダ $d\hat{s}^2 = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^2 dr^2 \quad \Rightarrow \quad d\hat{s}^2 = -\left(1 - \frac{2M}{r}\right) dv^2 + 2 dv dr \qquad \gamma = 2M 不無異哲点 . \quad V6\left(-60, +60\right) \rightarrow V6\left(0, +60\right)$


gm=0 故(計为类光鐘 gm=-(1-2mm) 故(計)"在AE类时而在BE类定

考虑A.BE内住的张测地常(U) $O=-\left(1-\frac{2M}{r}\right)\left(\frac{dv}{dv}\right)^2+2\frac{dv}{dv}\frac{dr}{dv}=\frac{dv}{dr}\left[-\left(1-\frac{2M}{r}\right)\frac{dv}{dv}+2\frac{dr}{dv}\right]$

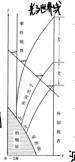
则征入魏渊地战有两族 ① $\frac{dv}{dr} = 0$ 即 v = const. ② $-\left(1 - \frac{2M}{r}\right)\frac{dv}{dv} + 2\frac{dr}{dv} = 0$ 故 $\frac{dv}{dr} = \frac{2r}{r - 3M}$


爱能=v-r ds=-(1-2/4) dt+ 4/4 dtdr+(1+2/4) dr=

内向族 $\frac{d\hat{r}}{dr} = 1$ 外內族 $\frac{d\hat{r}}{dr} = \frac{\gamma - 2M}{r + 2M}$ r = 2M为坚宜线

质区的世界线为类时线,线上每三四头必须限于该区的光维(两族类光测地线)内

⇒ 事件视界外的依色可以务ض视界进入黑洞,进入后无法退出掉入局企



- 坍缩加黑河的星体外部时空几个

屋体细价的外价粉到达外部静态观查——

外部观者看见星体收缩越来越慢、星体趋于

某一切Y=2M并济坛[3加均中的钟慢效应]

相邻波峰地缘

涮得光表甩期 比较、两条相邻的往间光子世界式在星体表面观者和星体外部观者世界线上分别定出的国定时间心和和心

计算得 AT'>AT 且表AT(=&Tx), AT'>AT' AT' 医时间增加而增加。

外部观省收到的光溦有较大波长,红移越来越大

第十章 宇宙论 Chapter 10 Cosmology
研究对象: 宇宙一形们不见的最大时空, 其时空1约5物质场之间的关系满处了义相对论
【特殊性:字函演化只此-次,且中途观测 , 无法重复实验 / 此时此刻能够观测到的是整馆届的目
研究方法:通过大量观测积累数据,通过构造模型解释观测结果、推断过去和预言未来
⇒ 宇宙的标准模型(standard madel)
重要修改:198年观测表明约宇宙环加速膨胀
多10.1 宇宙运动学 Kinematics of the Universe
10.1.1 宇宙等限理.[标准模型的基本假设].
宇宙等原理(cosmological principle):每一时刻的宇宙在空间大尺度上是均匀且各向同性的。
Einstein于1917年提出, (Spatially homogeneous and isotropic).
空间均匀:空间特色的物理情况相同 [字观尺度,>3×10°光午]
→ 宇宙中物质分布呈现"结团"现象、物质→恒星 ^[06/10] 星系(galaxy) e.g.银河款(Milly-Way)→
星系团(cluster of golaxies)→起星系团(supercluster)
宝间各向同性:任·观者向任·方向看到的物理情况相同·[字观]。"字观抹匀"
空间概念:某时刻t的空间.
非相对论物理学: 每个绝对问时面 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
狭义相对心、每个惯性系针水小引动等七面之七
①国民都是一张类空起曲面 (IPt. Nab) {t.xi}.
@ 所有层的集台区+1是-个单参族,即任-实数值+对应值层Σt
「火相对论:具有上述两个特点的任何方限方式(任-单多类全段曲面族) (26.
每层代表这一斯刻的空间 (M.gal)
町望身在-良对勒性 → 与此对勒性相适配的强计论方便

时空的空间约习性和各何同性性是时空内在对动性的反映.

一 存在河南河在各岸中各些的几乎和物理情况全同[空间为均匀面].

一栋楼条车中街观者在每时刻都无法用局域实验发现

他的任-宝河河(正实于他的世界线的河河)有别于其他宝门河

10.1.2 宇宙的空间以下

宇宙时空 (M, gab) induced 空间 (Zt, hab)

Det 1. 时空(M, gas) 称为空间均匀的(spatially homogeneous)

芳存在把M/)限的单多类空起曲面族(Σι)使得对 VtelR Vþ.qe Σι 存在hab (由gab

在Σ_L 上语等的 [b] 的等度规映射 φ: Σ_L → Σ_L , φ(P) = q [φ* hab = hab]

每一张工称为一张均匀值(surface of homogeneity)

至中一个个

wa 谷间性参系

Defa 时空(M. gou)中的参考系况积为各向同性(isotropic)参考系

若对其中任一观看G(4速为Za)世界线上 \peGB Wia.w.aeWp(等k空间软量 |wia|=|w.a|)

存在gab的等度规映射屮:M→M使屮(p)= P [中*gan=gab]

存在各个同性考察的时至初为各个同性时里.

例如:每个星分(字观对象)是一个合何同性观者(星秋的本动速度使其略微偏离)

⇒ 鉤同性移然兒与其均9面 \ti之间的关系:

词的时空中 允的观看世界统 G与均匀面三4不定正交(两者所属的惯性系不一致断)

但哪室间均和各向同性有唯一的均匀面族, G5 \(\text{A} 的 这种成立 .

Claim 10-1-1 若空间均匀且各何同性时空有唯一的均匀面淡,则均匀面必定处处与各何

同性观者世界线正交

Pf:

G(钢闸蜘蛛). 1段设均匀面∑t不正交于G在P与的4选Za

Wia, waelf

全Wa为切于Σt的矢量, Wa为不切于Σt的矢量

◎籠枫映射 4*gab=gab ⇒ 4LΣ]是均匀面

ΘΥ(P)=P ⇒ Υ[Σ]和Σ都含P⊆.⇒ P=Υ[Σ]ΛΣ

均个的的作性[过位的个对例] ⇒ 4[2]=2.

田"曲线切失的像等于曲线像的切头" Wath于 三 74 Wath于 [[]

Wsa不切于乙, 改收Wa+Wsa不标志就条件的等度规映射斗,与G为各们同性观看矛盾. 接钨钼等原理(假设) → 黑认强的均匀面族是唯一的.

> 新同性观者\绣与均衡政

此卻同性緣系務為宇宙静系

对导届时空做"1563+1分解" 4每一约1面=一个时刻的全空间 每一谷间附近对着世界线=一个空间上的全部历史。

讨论任时刻的皇间 丘的珍红行

· 萬曲年空间 (space of constant curvature)

广义黎曼宝问 (M.gab)杨为常曲率空间 , 若存在常数 K 使其黎曼班量满足

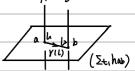
Robed = 2Kgcragbod

Claim J-1-2 常曲率空间具有最高对称性

即其曠规群的绡轍/独立Killing/建场1数 dim:X= n(h+1) , 其中n为空间维数 流粉维数. 良规5差及长值相同的两个常曲率空间有相同的局域时。

Claim 10-1-2 设hab是宇宙时空度规分的在均匀面工业的谬特度规), Rabed 是hab的
曲辛纮量、Rabad=hde Raba 则存在常数 K 使 Rabad=2Khazahizd
Pf·设/pcx)是3维流移工上与Pe互的全体2形式集合./////
$\dim \text{Np}(\lambda) = \frac{(h-\lambda)!}{(h-\lambda)!} = \frac{3!}{1! \ 2!} = 3$ ab自身仮稿、 (5t, hab)
$dim \bigwedge_{p} (2) = \frac{(n=3)!}{(n-L)!!!!} = \frac{3!}{1! \ 2!} = 3 \qquad \text{ad 自身投稿} \qquad (\Sigma_{t}, hab)$ $\stackrel{?}{\sim} \hat{R}_{ab}^{cd} = h^{Ce} \hat{R}_{abe}^{d} \stackrel{?}{\sim} ? \forall Ycd \in \Lambda_{p} (2) \hat{R}_{ab}^{cd} Ycd \in \Lambda_{p} (2) \qquad (P(3))$
故 \hat{R}_{ab}^{cd} : Λ_{p} (2) → Λ_{p} (2) 的线性映射· Λ_{p} (2) 是 3 维 安国
故 Robed 对应于3×3矩阵L 由 Rabed = Redab 新矩阵L是对称的.
bosis 对角矩阵 L= (Lil ° °) 由衛門性性 => 对面=和要
bosis 对角矩阵 L= (L11) 由衛門性性 ⇒ 对标相等.
由此 $L=2kI$. 单级阵 1 对应于 $\Lambda_p(2)$ \longrightarrow $\Lambda_p(2)$ 的恒等变换 S_a C S_b dI .
Sato Shall Yed = Sac Shall Yed = Sac Shall Yed = Yab. = Rand = 2KSato Shall
@heehaf => Rober = 2KSatc St d1 heehaf = 2KSacSt d hetchd1f = 2Khetahoff
RP Rabed = 2Khetahbid.
⇒ 宇宙的均匀面(Σt, hao)是常曲率空间,几何仅取决于K的值
□ K=0 空间平真 Ŕab ^{cd} =0 空间対元 dl*=dx*+dy*+dz².
三K70 室间为沙球球面。 4维欧欧军问(IR4.Sab)中3维球面上出Sab诱导的度规
2维环面嵌入3维欧氏星间(χιy.z]→{r,0,φ} χ=ysinθcosφ, y=rsinθsinφ, Z=rcosθ
3约球面嵌入4维欧的空间(x,y,z,w)→ (R,4,0,4) x+y+z+x+w+= P+
ds2=dx2+dy2+dz2+dw2=dR2+k2[d42+sin24(dθ2+sin2θdq3)] χ2=Rsin4sinθcosφ
$dt^2 = \overline{R}^2 \left[d\psi^2 + \sin^2\psi \left(d\theta^2 + \sin^2\theta d\psi^2 \right) \right].$ $f = R \sin^2\psi \left(d\theta^2 + \sin^2\theta d\psi^2 \right) = R \sin^2\psi \sin^2\theta \sin^2\theta d\psi^2 = R \sin^2\theta \sin^2\theta d\psi^2 = R \sin^2\theta \sin^2\theta d\psi^2 = R \sin^2\theta d\psi^2 $
$\hat{R}_{ab}^{cd} = 2\bar{R}^{-2} \hat{S}_{a}^{cc} \hat{S}_{b}^{d}$ $K = \bar{R}^{-2} > 0$. $Z = R \sin t \cos \theta$.
(w=Rost.

国 K <o td="" 空间为双曲面。<=""></o>
3维双曲面)嵌入4维闰的空间 (も,Mg,B)→ (多,4,0,4)。 せ・か・ダー ご= 多*
ds=-dt+dx=dy=dz=-d3+3=[dΨ+5h*4(dθ+5in*θ)].
$dt^2 = \overline{3}^2 \left[d\psi^2 + sh^2 \psi \right] + sh^2 \psi + sh^2 \phi + sh^2 \phi$
$\hat{R}_{ab}^{cd} = -2\bar{3}^{2} \hat{S}_{a}^{\bar{c}} \hat{S}_{b}^{d\bar{d}}$ $k = -\bar{3}^{2} < 0$ $\Xi = 3 \text{ shy cos}\theta$
(\tilde{\infty}, \tilde{\lambda}_a\tilde{\tau}). \text{t=3ch}
(ž, ř, w) (IR+, 1/ab). (IR+, 1/ab). は (IR+, 1/ab). (IR+
⇒ 由宇宙等原理可知宇宙在任-瞬间(即任-均)面)的 通伦讲法: 由平即用K代表.
简城空间NFI 大能是3种情心:
(a) 3维球面度规,线元讯4.0.4克为 dl= K ⁺ [d4+5/m ² 4(d8+5/m ² 0dp ²)] K>0
b) 3维平面度视),线元讯χη,ε或각,Θ,Φ表为
$dl^2=dx^2+dy^2+dz^2=dy^2+y^2(d\theta^2+5ix^2\theta dy^2)$ $k=$
(4)3维双曲面度视,线元用4.0.φ勘 dl=-K-[d4+sh2+(d0+sin20dp2)] K<
10.1.3 弗里德曼-勒梅特-罗伯特-沃克度规)
Friedmann-Lemaîte-Robertson-Walker metric, FLRW
宇宙时空度规gab·在自-均匀面工上的诱导度规为hab(x村应于空间线元dl=habdxadxb).
くtixi~生物な. ds=goudx*dxp=goodt+2goidtdxi+gijdxidxi
任意两个各种同性观难的世界线介于任意两处均匀面之间的线长处定等长。
Pf:利用均匀面族的选取作性. Zo Tt=Ot' AT=Ot'
逃促坐标款:在均匀面∑0上选(局域)坐标 水=4 x²=θ x³=4
①用谷间附观者世界线将空间坐标:携带至其余均匀面上,即同一世界线上各点的空间坐标相同.
❷ 调节每一条何同性观者的标准钟的初始设定 τ - 0 .


闭

何一时至的时间生标七块为过该鱼的各何同性观看的国有时で t=c

⇒ 宇宙时室的一个生桥东 {t.xi} Robertson-Walker (RW) 坐标系一各何同性参数系的一个共为生标系
且生标条中的时间生标 t 与均匀面族 {Zt}的多数t 约定-致
⇒优色 v) 等t面(同时面)=均9面,代表导面在t时刻的全空间
內 七生桥(3(等xì)=各何同性观者世界线,且其上的坐标时=国有时亡,粉为宇宙时
生标基实(品)"=(品)"=2"各何同性观者的4速,(品)"切于约面,与(品)"正交
$g_{\infty} = g_{ab} \left(\frac{3}{3t}\right)^a \left(\frac{3}{3t}\right)^b = g_{ab} Z^a Z^b = -1$
$g_{0i} = g_{00} \left(\frac{3}{34}\right)^{0} \left(\frac{3}{34}\right)^{b} = 0 \qquad i \ge 1.213$ $W_{1}^{a} \cdot w_{2}^{b} \in W_{0}$
gij = gab (京) a (高) b = hab (高) a(高) b = hij(tix) 济等度规度以 hab Wia wib = gab Wia wib
利用均循族的唯一性对hìj分离变量 hij (t.x)= a²(t) hîj(x)
由此 4维宁值度规在上述生标条的线过 ds=-dt=+a*(t) hij (n) dx idxi = dl*
(a) $ds^2 = -dt^2\alpha^2(t) \left[d\psi^2 + \sin^2\theta d\phi^2 \right]$
(b) $dS^2 = -dt^2 + \alpha^2(t) \left[d\psi^2 + \psi^2 (d\theta^2 + \sin^2\theta d\phi^2) \right] = -dt^2 + \alpha^2(t) \left[d\alpha^2 + dy^2 + dz^2 \right]$
(c) $ds^2 = -dt^2 + \alpha^2(t) \left[d\psi^2 + sh^2\psi \left(d\theta^2 + sin^2\theta d\phi^2 \right) \right]$
[正実数 K ⁻¹ /k>o 乔-K ⁻¹ /k <o a="" td="" は)="" 戈生粉]<="" 盼收进=""></o>
$R \times Y = \begin{cases} sin \psi & \text{is } dr = cos \psi d\psi, d\psi' = \frac{1}{1-sin \psi} dr'' = \frac{dr''}{1-r''} \end{cases}$
. 4 ы
shy u $dy = chydy dy^2 = \frac{1}{1+sh^2r} dr^2 = \frac{dr^2}{1+r^2}$
$ds^{2} = -dt^{2} + \alpha^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right] \qquad \begin{cases} k = 0 \\ 0 \leftarrow k = 0 \\ -1 \leftarrow k < 0 \end{cases}$
一FLRW度视 [宇宙学原理+均细减唯性的智术》]
待转5 0 k的即值未建室间几行 ② a(t)的具体函数形式被空间的动对演化
R展因子(scale factor) alt)的细胞火:
设hab是FLRW度规在均匀面Zt上的选择模规),则(∑t.hab)是3维黎曼空间
[hu,正定].

沒a.b分别是各个B(的同性观查)与Zi的发点

Y(L)是a.b之间的,躺在工上的测地线,则其线长

便是asb(作为ZeL的)距离[两运门所有线段版的[确析]. 化层储绘.

= a(t) (i Than (水) all = att) DAs. DAS 从取决于星知A BIM5时间天关

= R原因3aH)是以DAO为单位在比到测A.B证离价得的值.

k=+1时宇宙村河 5hab造配的体元 $\hat{\mathcal{L}}=a^3sin^24sin\theta d4\wedge d\theta \wedge d\Psi$. 在任一研刻士的体积 $V=\hat{\mathcal{L}}=\int \hat{\mathcal{L}}=\int a^3th^24sin\theta d4\wedge d\theta \wedge d\Psi$.

= $a^3(+)$ $\int_0^{2\pi} d\theta \int_0^{\pi} \sin\theta d\theta \int_0^{\pi} \sin\psi d\psi = 2\pi^2 a^3$

即alt)为封闭宇宙在时刻十的特征.

貝10.2 宇宙动力学 Dynamics of the Universe

10.2.1 哈勒健 Hubble's law

20世纪ネル Slipher 观测|河外星分的光谱,41个星种36个发生3红移(波长变大).

谈入和入分别是发光时和光到达地球时的激长,则 Z= <u>入'-入</u>为红形。

解释: 维勒效应 (蓝形为如与的)相问运动)

⇒ 宇宙膨胀的观测基础.

1923年起 哈勃测量:河外星系与到门的距离 → 红移飞与距离D成正比:

 $Z = \frac{\lambda'}{\lambda} - 1 = \frac{\omega}{\omega'} - 1 = \sqrt{\frac{1+u}{1-u}} - 1 \cong U \left(-\text{Minth}\right) \qquad Z \times D, Z \simeq U \Rightarrow U \times D.$

1929年 哈勃定维, U=HoD。 当今星系遇行速度正比于当今星系距离,系数为

哈勃常数 (Hubble constant).

定义两个星条的相对选率 U(t) = db(t)	DH)=aH)DAB	DAB仅取决于星系A.B.
$U(t) = \int_{AB} \frac{da(t)}{dt} = \frac{\dot{a}(t)}{a(t)} D(t) = H(t) D(t)$	對射 t=ta	U(t=to)= H(t=to)D(t=to)
联略勃步数 (Hubble parameter) H(+)==	x(t) 吃効常数是	钴动参数的坚全值,
性勃敦律 U(H)=H(H)D(H) 对绘定的	刻七,任喜两个星系之(同的是行选率正比于两者距离
① D(ta) *0, Ha>0则有U(ta)>0 任星款观	则是季叶都发现其	离自身退行运去.
⇒宇宙膨胀没有啊.		
② D匙够大使以可以大于光速C. [退行速率]	A.定义为星&距离对字	````
相对论的基相则之一:质与的世界线是类	(时曲线 (绝对的)	
	泸行光速(相对的)	
[locally measured relative velocity] 【读文:日	1观者对质与做当时当	地测量所得的速率.
⇒不导致谬误 (推导FLRW度极)过程中	毕承认每-经的	世界线是类时曲线).
10.2.2 宇宙等江移 cosmological redshift.		
10.2.2 宇宙浮江移 cosmological realshift. 宇宙浮江移是弯曲时空效应,不是平直时空的多	着勒效应. (近針	星糸的时至曲率效应不明显
,		星然的时至幽辛效应不明显
宇宙学红移是弯曲时空效应,不是平直时空的多	和雅A的4速	星然的时至曲率效应不明显 2012年 1400年 1814 1814
宇宙学红移是弯曲时空效应,不是平直时空的多几乎光影如从下光信号沿测性线传播, 飞分为	星轮观看A的4速 0,在Pa被星轮B收到	A B TUP)
宇宙学红移是弯曲时空放应,不是平直时空的多几乎影响从下光信号沿测性线传播, Za为是 该屋套A在月岁出的光子沿类光测地绕1(p) 多项光子在月互相对于观者A的角频率 Wi=-gab 光子的十次次 Kb=(3pb=(2pb)+=(2pb)++(3pb)++(3pb)++++++++++++++++++++++++++++++++++++	是条现在A的4速 6,在P.被星系B收到 9Kb/R 0_dai	2 P P P P P P P P P P P P P P P P P P P
宇宙学红移是弯曲时空放应,不是平直时空的多几乎光学近似下光信号沿测性线传播。 飞分为 法	是条现在A的4速 6,在P.被星系B收到 9Kb/R 0_dai	2 P P P P P P P P P P P P P P P P P P P
宇宙学红移是弯曲时空放应,不是平直时空的多几乎影响从下光信号沿测性线传播, Za为是 该屋套A在月岁出的光子沿类光测地绕1(p) 多项光子在月互相对于观者A的角频率 Wi=-gab 光子的十次次 Kb=(3pb=(2pb)+=(2pb)++(3pb)++(3pb)++++++++++++++++++++++++++++++++++++	E条现在A的4速 0,在P2被星系B收到 (2Kb/P) 10 dai 11 dp 12 dp/P1 W2= d	$ \begin{array}{c c} & & & & & & \\ \hline R & & & & \\ \hline R & & & & & \\ \hline R & & & & & \\ \hline R & & & & & \\ R & & & & & \\ \hline R & & & & & \\ R & & & & & \\ \hline R & & & & & \\ R & & & & \\ R & & & & \\ R & & & & & \\ R & & & \\$
宇宙学红移是弯曲时空放应,不是平直时空的多几个光彩近似下光信号沿沟性线传播, 己《为京 汝屋教人在月岁出的光子沿类光测地域 1(月) 逐项光子在月兰相对于观者人的角频率 Wi=-guz 光子的十次 Kb=(字)b=(文)dt+(3xi)b=xi=1/2011/2011/2011/2011/2011/2011/2011/20	2 本现在A的4速 6 ,在P2 被星系B收到 $\frac{a(k)}{a}$ R	$\begin{cases} \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & $
宇宙学红移是弯曲时空放应,不是平直时空的多几个光线近似下光信号沿测地线传播, 己《为京 汝屋春人在月岁出的光子沿类光测地线 1(月) 逐项光子在月互相对于观看人的角频率 Wi=-guz 光子的十次矢 Kb=(3p)b=(2x)dt + (3xi)b=2ti p (2xi)b=2ti p (2xi)b=	是条现在A的4速 $6, \overline{\alpha}$ P2被星系B收割 $9K^b _{P_1}$ $\frac{dA^i}{A\beta}$ $=\frac{db}{d\beta} _{P_1}$ $W_2=\frac{d}{a}$ $\frac{dA^0}{A\beta}=0$ $\mu=0,1,1,2,1$ $g_{22}=a^2(t)\gamma^2$ g_3	$\begin{cases} \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} & \frac{\lambda}{R} \\ \frac{\lambda}{R} & $

 $\begin{bmatrix} 7^{2}_{02} = 7^{2}_{20} = 7^{3}_{03} = 7^{3}_{30} = \frac{\dot{a}}{a} \quad 7^{2}_{12} = 7^{2}_{31} = 7^{3}_{13} = 7^{3}_{31} = \frac{1}{r} \quad 7^{2}_{33} = -5 i n \theta \cos \theta \quad 7^{2}_{23} = 7^{2}_{31} = 7^{2}_{32} = 7^{2}_{33} = 7^$ $M=2 \frac{d^2\theta}{dB^2} + 2 \frac{\dot{a}}{a} \frac{dt}{d\beta} \frac{d\theta}{d\beta} + \frac{2}{r} \frac{dr}{d\beta} \frac{d\theta}{d\beta} - \sin\theta\cos\theta \left(\frac{d\theta}{d\beta}\right)^2 = 0$ ζ θ(β)=Βο Ψ(β)= Κο 1=3 dip + 2 a dt dp + 2 dr dp + 2 cott dp dp dp = 0 选择些标条使 (Pr)= 00, (P(Pr)= 40, 1 | | | | | | | | | | | (元) 和(二) 加量为零 [空间故影性的矢量正交于日与中生桥线]. $\frac{d\theta}{d\theta}|_{p_1=0}$, $\frac{d\theta}{d\theta}|_{b_1=0}$ 由于Y(P)给定,即94=94(P)为确定的函数,上两式为关于θ(P)和Ψ(B)的2阶联之常数分方程组. 何 $\theta(\beta) = \theta_0$ 和 $\varphi(\beta) = \varphi_0$ 是满足初始条件 $\theta(\beta_1) = \theta_0$, $\varphi(\beta_1) = \varphi_0$, $\frac{d\theta}{d\beta}\Big|_{P_1} = 0$, $\frac{d\varphi}{d\beta}\Big|_{P_2} = 0$ 的唯解 ⇒ Ka=(元)a # + (元)a dr 对任-结境的测地线 1(β), 总可通过重新选定 θ. Ψ生标 do = dφ = 0 使儿的成为经可测地线 [治测地线 B, γ δ常数] $\mu=0 \quad \frac{d^2t}{dP^2} + \frac{a\dot{a}}{1-kr^2} \left(\frac{dr}{dP}\right)^2 = 0$ 类地 D=gab KaKb=gab[(於)*#+(於)*#][(於)#+(於)#]. $= -\left(\frac{\partial t}{\partial \beta}\right)^2 + \frac{\partial^2}{1 - kr^2} \left(\frac{\partial r}{\partial \beta}\right)^2 \quad \Rightarrow \quad \left(\frac{\partial t}{\partial \beta}\right)^2 = \frac{\partial^2}{1 - kr^2} \left(\frac{\partial r}{\partial \beta}\right)^2$ 可得 $\frac{d^2t}{d\beta^2} + \frac{\dot{a}(\frac{db}{d\beta})^2}{a(\frac{d\beta}{d\beta})^2} = 0$ 且 $\omega(\beta) = \frac{dt}{d\beta}$ 则 $\frac{d\omega}{d\beta} + \frac{\dot{a}}{a\frac{dt}{d\beta}}\omega = \frac{d\omega}{d\beta} + \frac{\omega}{a\frac{da}{d\beta}} = 0$ 解也 W=Wa^T (Wb为称病常数) W= db 为过り(16)上任-鱼的各河同性观看测得的光净发车 入×a 随着宇宙膨胀(a增大),宇宙中每一般(相对于各同同性观看)的混长都此地增大 考虑p., P2两点 W2 = a(t) 相对红移 $\xi = \frac{\lambda_2 - \lambda_1}{\lambda_1} = \frac{\omega_1}{\omega_2} - 1 = \frac{\alpha(t_2)}{\alpha(t_1)} - 1$. 类光测性线 0=ds=-dt²+<u>dl</u>² A,B距离足够小 a(ta) ≅ a(ta) + à(ta)(ta-ti) = alti)+àlti) D(ta). ta-ti= D(ti). $\rightarrow \qquad Z = \frac{1}{a(4)} \left[a(4) + \hat{a}(4) D(4) \right] - 1 = \frac{\hat{a}(4)}{a(4)} D(4) = H(4) D(4)$

Z=H(ti)D(ti) 符合哈勃观测结果

10.2.3 尺度因子的演化. Evolution of the scale factor

Einstein equation Gab=8πTab FLRW度规→Gab+Tab => a (4)的微方剂.

① 宇能动张量: 宇宙的内容物 (contents) = 49质 (motter) + 辐射 (radiation) + 暗離 (dark charge)

物质: 静质量非零的粒子构成的内容物 (实物)/辐射: 静质量为零的粒子构成的内容物 (动)

贡献:星系/微波背景电磁辐射 ⇒ [新模型] 星系+暗物质/微波带辐射/暗能量

O 星卦 ⇒ 理想添体 ⇒ 尘埃(压益可忽略). 暴亚以各个同性观查

 T_{ab} (motter) = P_M U_aU_b U^a 为舒何同性观者的4速, P_M 为各何同性观者测得的物质能量密度。

③辐射 ⇒ 理想流体 ⇒ 光头(4述野的同性观想的位, þ= 量介)

Tab (radiotion)= Ruallb+Plgab+Uallb) 农及P为谷间时性观者测得的辐射能量客庭和辐射

⇒Tab (total)=PUaUb+P(gab+UaUb) P为生埃(星系)和辐射的总能量宏良.

$$T_{oo} = T_{ab} U^a U^b = \rho + \rho \left(g_{ab} U^a U^b - U_a U^a U_b U^b - 1 \right) = \rho \qquad T_{oi} = T_{io} = 0$$

 $T_{ij} = T_{ab} \left(\frac{2}{3\pi i}\right)^{a} \left(\frac{2}{3\pi i}\right)^{b} = p g_{ab} \left(\frac{2}{3\pi i}\right)^{a} \left(\frac{2}{3\pi i}\right)^{b} = p g_{ij}$ $T_{ii} = p \alpha^{2} (1-4x^{2})^{-1}$ $T_{222} = p \alpha^{2} + 2 \sin^{2}\theta$

回機因斯坦耀 Gab

非零量
$$G_{00} = \frac{3(\hat{\alpha}^2 + k)}{\alpha^2}$$
 $G_{ij} = -\left(\frac{2\hat{\alpha}}{\alpha} + \frac{\hat{\alpha}^2 + k}{\alpha^2}\right)g_{ij}$

第四斯坦方程 00分量 — Friedmann 方程
$$\frac{3(\hat{a}^2+k)}{a^2} = 8\pi \ell$$
 7 次銀夜日子att)的基标程.

可知 3ä=-4Ta(p+3p). + 微分friedmann方程 bàã=(btopaà ⇒ p+3(p+p)==0

P70, Þ20, a20 ⇒ ā<0 宇宙或膨胀(à20)或收缩(à<0),除过寝时刻无à=0,即宇宙不叙于静态

Q(o)=0 家庭秧大 一大縣炸焉鱼 (big bang singularity)

"林爆炸对应于一个时势性,不能向过效格.

——存在无限趋近于它的不完备类时测地线,物质密度和由时至曲率构成的某些标量在趋于它时发散

3°大爆炸作的物质在每时刻都均匀充满整个宇宙空间,粒坛间距离增大是层间的跳的表现

讨论两个极端宇宙:⇒ ale够性了:宇宙由辐射; 目前接近于物质; Friedmann 活起 a²=等pa²-k.

(a) Tab 是完全来自物质(尘埃) 尘埃宇宙 P=0 PM 0 = 常数 PM 0 a =

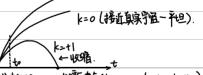
任-失动体积陋在增大而接合增大,体积内尘埃松数(触),破,故聚随在水水小。

初始件
$$\alpha(0)=0$$
 $\alpha'^{2}(\hat{t})=A\alpha(\hat{t})-k\alpha'(\hat{t})$. $\dot{\alpha}=\frac{d\alpha}{dt}=\frac{d\alpha}{dt}\frac{d\hat{t}}{dt}=\alpha'\frac{1}{\alpha(\hat{t})}$

$$0k=+1 \qquad 0=\frac{A}{2}(1-\cos\hat{t}) \qquad t=\frac{A}{2}(\hat{t}-\sin\hat{t}).$$

(a)
$$k=-1$$
 $0=\frac{A}{2}(\cosh^2-1)$ $t=\frac{A}{2}(\sinh^2-1)$

b) Tab 是完全和在辐射(洗光) 辐射中分析 PRQ4=常数. PRQ4=


任-失动体积随在增大而接合增大,体积内光数(能量E~w~a+)由于红移而接a+ 减小,故愿度接口4减小.

$$\hat{\mathcal{C}}$$
 $\hat{\mathcal{C}}$ $\hat{\mathcal$

att) 1

0 k=+1 O(t)=2Bt-f

 $\Im k = -1$ $a^2(t) = 2Bt + t^2$

模型的跨宇宙-成熟粉胀,大排压台(big-crunch signlartly)

Friedmann 1922年得出生埃宇宙解 Hubble 1929年观测结果 Robertson, Walker 1955年得出度规

⇒ 椋钨铂模型被粉为 Friedmann - Lemaîte - Robertson - Walker 模型.

Einstein 静态宇宙模型— 添加宇宙学数项入 ⇒ Dark Energy 加速膨胀机制

定性讨论实际净值(既急实物又含辐射):
⊙ 观测表明当今宇宙正在11的从 à(to)>。
t<も a(t)曲线向上凸起,与七轴相交子t=O时刻
$t>t$ $\dot{\rho}+3(\rho+p)\frac{\dot{a}}{a}=0$ $\frac{d(\rho a^2)}{da}=-3\rho a^2$
$3\frac{\dot{a}^2+k}{a^2}=8\pi\ell$ $\dot{a}^2=\frac{g}{3}\pi\rho a^2-k$.
0→∞(t→∞) k=0 à→0 k=-1 à→+1.
k=+1 t=to, a=ac满足多九pa==1为秋值 t×tc, à>0不断成性 t=tc,à=0/t×tc, à<0
③宇宙年龄 星系实际距离 D(t)=a(t) Ďab 10(t)
苦膨胀-直外-5
Ho = (20 km/s)/百玩年 ⇒ to = Ho = (137)
提高哈勃常数 Ho 的测量精度 . Ho=(ooh km·sect. Mpc 1 (0.4 \subseteq ho 1 (0.4 \subseteq ho 1)
1 Mpc=(06 pc (parallax second 形差距 pc=3.26光年). Ho=71 km·st. Mpct (h=0.71 stood)
③ FLRW度视描述是宇宙在宇观尺度下的行为
较水度下的局部行为一根据该局部的物质沥惰;心选择适省成规证述
0.2.4 宇宙学常数项和爱田斯坦静态宇宙, The cosmological constant & the Eisstein static universe.
質田斯坦方程. $G_{00}=8\pi T_{00} \Rightarrow 3\frac{\dot{a}^2+k}{a^2}=8\pi \rho$ 静态 $3k=8\pi\rho a^2$
故修改爱国斯坦防柱 Gab=8元Tab Gob=Gba,∇αGab=0 ⇒ Gab只能取Gab和gab的劣性组包。
Gab+Agab=Tab 其中人为宇宙学学数(Cosmological constant).
Gab=8r(Tab-1/gab)新"能动牧量" Tab=Tab-1/m / Agab. Tab为原能动牧量.
±埃模型含P不舒 ρ=Too=Too-fongoo=ρ+fon
FLRW真规 Pgij=Tij=Tij-fongjij=-fongjij P=-fonc<0 (if N>0)

引入人 > 0 项 🖨 在宇宙中加入压强 p 为负的物质。

Friedmann方程 3k=8xa*(戶+合) Z k=4xa*戸>0 故k=+1 空间灯场斑面灯

黉田斯坦特杏宁函度枧(metric of Einstein static universe).

ds=-dt+a+fd++sin+(db+sin+odp>)7 其中a=K=常数

——不稳定静态解(微忧后要为收缩或膨胀)

§10.3 宇宙的垫版. The thermal history of our universe

10.1 宇宙演化简史 A brief history of evolution of the universe

根据标准模型分勒出的宇宙从大爆炸至今的澳个简单。

宇宙由以辐射以注的阶段转到以物质为主的阶段 七=10"s 大爆炸后数千年.

考虑P铂的温度变化(绝热膨胀):早期P铂辐射 p×a→ 辐射的影纸计 p×T→

则T×a⁻¹(a足够小时k可以忽略 alto=(>bt)>/). T=101// t t=0时T→∞

强的演心是从温度和限高的大爆炸专生开始的、温度不断下降的绝些膨胀过程.

1.大爆炸奇兰 0原初奇兰,如宇宙起源大爆炸的奇兰 @终3奇兰,如大阪量恒星晚期坍缩 时空奇三:许多物理量在超近奇兰时和张大(聚度,曲率等),一切物理定律在奇兰处失效。

1965年-1970年 Penrose和Hawking 借用整体微分几何证明3一系列奇互定理。

只要某些合理条件满处[不急对粉性要求],时空奇鱼无法避免

奇些理→奇些的存在性/经典广义相对论在奇些附近的不适用性. 经典=非量子.

✓ 时空结构和3/b本版 ×量分理论的基本原则

概率性预言.

量3理论:任何观测量不能有确定值(除非系统处于该量的本征存),对测量结果只能做

下义相对论: 所有可观测量(如度规)都有确定值(世界线描述) Hawking:参启导效应后参与避免

⇒ 极早期宇宙 [o.tc] 应使用引力的量子理论(量子引力论 quantum gravity 尚未建立完整理论).

改量纲分析 七0涉及时至.引力及量3论)[先建C,引力带数G,普朗克常数 h]

||险界时间 to=tp=(-Gt C5)な~1045 普朗を时间

补充A:量33岁.

- 物理量取值的量化:能量→能级
- 粒子的自旋 S (形字內下) { 整數 台。言 是 ... 费粉 fermion (e,p,n -...)整数 0,1.2 ... 現色> boson (Y)

补充B: 粒3物理

引力(gravity)

- ① 相至作用 interaction 强相至作用力 (strong), 勐相至作用的 (weak), 电磁相至作用力 (EM)
- ② 粒子与仅较子 antiparticle
- eg. 电s(e) electron 5 正电s(e^t) positron 带电量相反,静质量相同

正的\$P\$ (由粉激发) 2Y→e+et

粒子的发现 四字宙射线 Cosmic rays 旦加速器 accelerator

③ 中微子 Neutrinos

阪子(p) proton 中子(n) neutron 光子(V) photon

n → p+ e+ ū。不輔电, 质量粹小,与其他较子柖斫(丽)协做骑, 可自由穿越地球, 自读 s=立

⊕ 介子 Mesons 传递相互作用的基本粒子 传递电磁相互作用的是光子(力程无穷远,粒马零静)建)

1935 沩川杏树 猛相虾用的中间斑色为分介子,质量约为2001%

1942 城田昌一 两种介子 11个子写从子(1937年发现,不参与强相互作用)

张子 hadron: 参加强相互作用的彩子 (p,n,T*,T*-**) — 转3 lepton:不多加強相至作限的粒子(e,证,μ···) т. ⑤ 強う结构 Hadron Structure (dam, up, strange, charm, bottle, top). 蒬 quark (1964年 Gell-Mann报纸):组成强子的粒子,有三种颜色(R.G.B),有江神味道 两种电荷(e*.0)之间的电磁相互作用 — 光子V传递 QED 三种包芍(R.G.B)之间的強相虾用一肠马传递 QCD 3个多见级的强3元制 味道不同的藝術帶电特不同 P=dux(=3×2-3=1e) Charge(e) - 1/3 3/3 - 1/3 3/3 - 1/3 3/3 π⁺= du (計計=1e) ⇒ 3 × 6 = 18种気 T= du (-3-==-1e) 転子 年子 第代 と, ル… 転子 年子 第代 ル, ル… 第代 で, て。… 中国現色子: 光子V, 版子… ⑥相到作用的统一 Unification of interaction

电站相互作用统一模型 Weinberg-Salam model

利压规范理论 Gauge Theory (1934年 Yang-Mills) 数3項:纤维丛 Fiber Bundle

概范变换 Φ100→Φ107 应货物理体系的证纸量保持不变 概范变换是相近作用的源。

⇒ 修故体系的证纸量使其满足枕艿AT戛性 — 加入规范坳 (电磁场)相互作用 量子心规范的 → 规范和子(分)静臟为雾

价有的同-类机	2.范变换构成-个规范器 e.g. 电骚舰笼接换 ↔ U(1) [dim=1]. ⇔ 电磁场 Y
一辑 Lie	group: group and manifold SU(2) [din=3].要率有3个规范粒:
	·Higg·研究对粉性的自发被缺.——使得SUU)的规范较与有静质量
	4,Salam 电弱係-模型 U(1)×SU(2)
	*3Y W W Z°
	0 80GeV (VGeV (大线量校刊转播力程根短的转相互作用
1973年 实验证	实存中性够添)
1983年 CERN	1溴羧酸证WiZ瑰色子.
⇒ 大統-模型	grand unification theory (GUT). 其中一个模型: SUCS).
Y+ W±, Z°+	· gluon (g) [8种] + XM(超转作概分 10 ¹⁵ GeV) [12种] = 24个规范标子·
	CC 衰变(寿命)0°°~(0°°),重头数不守恒
⇒ 超统-模型	· 引力+电磁相至作用+ 钨相互作用+ 设相互作用
其十种理论	它:起结理论 superstring-
2. 早期宇宙的型	預打. Thermal equilibrium in the early universe
讨范 t= 0 ⁴³ s	之后一个核时间的宇宙:
1要由能量极高的	的正负粒子对组成,包括夸勒. 轻子. 传递相至作用的机范琪色子(gauge boson) ···
高能粒子之间步	文繁相互作风(平均自时程) ⇒ 热斗衡态("-锅汤说拌的基本粒子汤").
	期9亩粒3之间的相好作用辛运大9亩膨胀率 [3种粒子局域热平衡]
	ç辐射粒->(湿度>T的辐射中辐射粒纤均能量约> (>1)
相对论性粒子	近线运动的实物粒子(静能运行版T).
	t=0.015 T=10"S KBT=1.28x10"/(1.6x10")=(0 MeV K}
	hec= 0.9(x1030 x (3×103)2/(1.6×10-19) = 0.5 MeV \$3

"o 寸声性"
电量分为论 两个先子 ———
2Y (e, e ^t)
室温 koT << mc² 电对产生与湮灭过程发生概率10分0
T=16°K koT>>mc> 对产生选率《光子家庭 对湮灭选率《(e.e)电对家庭
将的时 电对与判验良大致相等。
(於,中> mp≈1840 me (p,ō)和(n,n)密度1子参复,存在极少量展子和中子
3. 物版和负物版的不对初性 Asymmetry of particles a antiparticles
t=0.01s T=10"K 宇宙的内容物:大量中微子U和农中微子D,大量光子C,大量电子(e,et)
少量阪シャ ネ 中 > n
t<0.0 s T=1013K KBT>Mpc3 大量的政质3对(P.P),政中3对(n.in), 9量p,n
当今宇宙中宋坳主雩由质子和中子构成,负粒子在温展下降时被湮灭
→ 当今宇宙存在关于较子和校校子(物版和版物版)的不对初性 · 事/光子 = Nb ~10-10 +0
一开始中重35万更多数量相等,在极早期宇宙演化十出现重多的不对和性.
要求重>数不守恒 ⇔ GUT 高能慎妆下的预言.
4 中微子退耦 Neutrino decoupling.
tols Tolonk (温度与密度降低) 中微少与其论标》的相互作用辛运行宇宙膨胀率.
平均自由移增大,近似成为无相至作用的自由粒分充满守宙,不与其它粒子关处亚平衡中。
— 中徽→的退耦 独立演化,当分温度为T= 2K.
5. 原初核后成 Primordial nucleosynthesis. t=100s
①解释氡丰度问题(helium abundance). 氦约台节服量 /4 但无法解释来源。
T>101°K 高能光子乱碎质子和中子结合成的复核、("光分裂"). 有 Jdeuterium) 氚 (tritium)

[0°K(稍行)<T< [0°K 核数聚度低+穿窗快速膨胀 ⇒仅有两粒分反应处 p+n→2H+V 2H+n→3H+V 7H+7H→3He+n 3He+3He+2p. 升为氘, 升为氚 "辰扶^{†"}杨轼的氚不6裂 2H+p→3He+V 2H+3H→4He+n → :李秋春的产物为"He → 生成一点" [重];的元素在恒星演化的过程中产生] 3H不稳定强裂靉炒地,故产物有HeiH,He,Zi 核反应引力坍缩及起新智爆发 质量比例 1 105 105 1010 核症成结末的中分和低子的数塞度之比 Nn/np ⇒ 原初核症战产性的氦+接: 中徽分色耦前质子和中子通过弱相互作用转换 P+e⇔n+ル,p+厄⇔n+et 由于好质量之质子质量 (Mn=Mp+2.5Me), 质子变中子的过程更难发生. 正位过程达到统计平衡时 $\frac{n_n}{n_p} < 1$ 即 玻尔兹曼公式 $\frac{n_n}{n_p} = e^{-\Delta m/k_BT}$ ($\Delta m = m_n - m_p$). TWE(doK时中微分逻辑 N.P互变过程基本停止, nn ~e-any/horm 被渐结 秀虎自由于的自发复变 N→P+2+花时 PS特别可观部分~氦示戏时于宙年龄 (t=10°s) ⇒ nm 略低于赤绀直e-Am/koT ~ 1 全σ= nn kn3gx N=Nn+Np=(σ+1)Np 氮中价含含分数 NHe=2Nn=2σNp. 腳核成产性的氢素度 $Y = \frac{Nhe}{N} = \frac{2\sigma Np}{(\sigma+1)Np} = \frac{2r}{\sigma+1} = 2(\frac{Nn}{Np})(H\frac{nn}{Np})^{\frac{1}{2}} \cong 0.2$ 观测到的氦榱指断原韧氦丰度 Y≈0.23 宇宙等标准模型 三大基在(理论预言符合实际观测) ○宇宙在膨胀 ④肠初核合成理论计算负责 ②宇宙微波性影辐射 3H,3He,7Li的核对钼中勤与粉散震之比) 1= h, = (3.4~t)×10-10 敏度. 1个野被到7个光空国 儿影们光分裂的难易 = 影啊核症的旅时刻 = 影啊产物丰良 Y, ≅ (3.4~5)x lo^{-lo}产物理论接与观测特符合 1、支持核合成理论 2、确定参数1的范围.

②确定中微子的种类数 No 为 3. 轻 lepton: e, Ve/从从/ T, Va. 1976年 Steigman 指出中徵子种类的增加 st使宁宙限初核症成的主要产物*He的接增加, 4He的观测报→Nu的上限: k在a很小时可沉略 H= a → H= 3πρ 中微子种类Nu多→C较大→H较大,宇宙膨胀较快->中微子提前退耦 tud较小Twa较大 $\frac{h_0}{n_p} = \sigma = e^{-\frac{4h_0}{h_0}}$ 冻结时代刚校大 =) $Y^1 = \frac{1}{2a} + 1$ 产生的 $Y^2 = \frac{1}{4}$ 1977年 No≤7 1990年 No≤3.3 Walker结果5欧洲核子研究中心 CERN 的加速锰结果 No=3-钕 "宇宙论可对松子物理学提出重要限制、宇宙是高能加速器的重要补充" b. 宇宙彻波背景辐射 Cosmic Microwave Background Radiation (CMBR) t=1013s=4x105年 T=3000K-4000K KBT=0.3eV 电子预%能量挣脱核的电磁束缚 原子核+电子 幽柳 中性原子 光子是电磁相互作用的中间玻色子. 会物为电离状态(等高3体): 光子与带电和子有频繁相互作用 3物为中性状态: 光35其几张相互作用,平约1曲时间大于宇宙野年龄

⇒ 宇宙对于光子变得透明(刚强蔑运动) 光子逐耦 photon decoupling

退耦前 光行某物粒子达到垫ү衡,能量农良按涨的分布满足黑体辐射曲线:

普朗克公式 du= 8xhc (ehc/16th - 1)-1 dd du为单位体积内装k在(入,入+dd)范围内的光子能量

退耦后 (B满足雀明兔公) 温度下随尺度因子a+t)增大而反比下降:

空间膨胀 A→ a'= a a 红移入→入'= a入 单位体积光数 x 1/23 每光能量 x 1/2 $|\vec{k}| du' = \alpha'^{4} du = \frac{8\pi hc}{\alpha^{4} \lambda^{5}} \left(e^{hc/k_{b}T\lambda} - 1 \right)^{-1} d\lambda = \frac{8\pi hc}{\lambda'^{5}} \left(e^{hc/k_{b}T'\lambda'} - 1 \right)^{-1} d\lambda' + |\vec{k}| + |\vec{k}|^{2} |\vec{k}|^{2}$

墨耦后光子系统的"终温度 T。~2.73K 入 = 0.1cm (微波波段)

一当今宇宙由大量背景光子所均匀充满,其能量密度轻波长汤布由 T~2.73 K 那条黑体辐射 毗钳进述

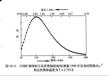
辐射能量:理集中于微表波段 ⇒ CMBR.

1965年 Penzias, Wilson 观测到各向同性的 CMBR — 1978年诺尔沙类. 入=7.35cm ~ T=3.5K

理论解释: Peables, Dicke, Roll, Wilkinson

确促大爆炸遗迹的条件 ①能谱分布是黑体辐射曲线

②高度的各何同性性(各个方向测得强度(温度)相等)


1967年 证实非卸同性性不起过 0.3%

7,3(0)

1989年 NASA发射宇宙背影探测社 COBE (Cosmic Boukground Explorer)

对宽广的摄段(故测量并得划非常完美的黑体辐射曲线

测量背辐射的舒同性性: 脊温度T作为解疫函数展开

非含门同性性)重复现为两个最低级的珥箔总数、偶构矩(dipole moment), 囚格艇(quadrupole moment)

一,推向同性真的幅值分别为 TyTo~10° TyTo~10°

TyTo:观看科提完美备问时观看:tb环绕太阳,太阳洗银河和n,银河系"本边速度"

⇒地球相对于各间性系(宇宙静系)的准确选率为 350 km·s⁻l

to to

T-/Ta、宇宙本身微小的非各何同性,经引力放大后形成宇宙的大尺层结构

- => 标准模型胜于稳恒态导值模型(steady state model, Hoyle提出)
- 7. 结构形成 structure formation

t~|0⁹年

守观上状度空间具有均匀性和各向同性性 → 小一块度上宇宙呈现在较的结构

一今天宇宙的复杂结构起源于极早期宇宙中非常微弱的聚度抗动(涨基 fluctuation) SP P为和的家庭、SP为该总家庭与P之差。

\$P>0 物质码1为作用下收缩于此些,导致更高的宽度涨落

1902年 Jeans 静态流体的宽展激落

1946年 Lifshitz 肠桃宇宙中密度涨落被放大的理论)

- ⇒结构形成模型:重子物质(弯曲)酚,中子组成)+非重3璀物质 nonbaryonic dark matter
 - ① 垫晴物质模型 结构形成 卧而下 先的成起星参园, 再逐级破裂为星彩园和星参
 - ② 冷暗物质模型一结构形成 肛而上 先形成星私, 再逐级形成星私团和超团

原初状动的起因:作为初始条件指定→由暴涨模型提供

[极早期宇宙松短时间内指数式翻加速膨胀].

⇒ 以暴湫提供的原初抗动为种子的冷暗物质模型

10.32 賭物版 Dark Matter

FLRW度规) k=1 针闭宇宙 k=0 k=-1 开放宇宙

$$H^2 = \frac{8\pi G}{3} \rho - \frac{kc^2}{\alpha^2} \xrightarrow{\frac{8\pi G}{8\pi G}} \frac{3H^3}{8\pi G} = \rho - \frac{3kc^2}{8\pi G\alpha^3}$$

心界発度 (critical density) Pc = 3H2

P=Pc 开放辑 k=o

P>Pc 科闭宇宙 k=1 P<Pc 开放宇宙 k=-1

宇宙心了取决于引力强弱是否能拉回粒子~宇宙质量额及

骸爹数 众:= 会 以此处地的骸

[几乎尼都是时间七的函数].

=> 计算当今质量密度 (设星标是宇宙主要内客物) 星系数密度为n,星系平均质量为M 则fo=nM 设备空间中单位体积的光度(光度密度 luminosity density)为之,星系平均光度为 $\overline{ }$ 见了 $\overline{ }$ 见了 $\overline{ }$ 几

可得 Po= 工事 斯一方科的成此 (average mass-to-light radio) Co= またなナー 1°实际测量2°减减差

测量涡旋星系(spiral galaxy)质量的动力学方法: 椭圆星系(elliptical galaxy-)

恒星以星轮的幼为何时绕星轮似城、格为r的圆轨道运动 m = GMm

/ Name of the state of the sta

其中v(r)是离qn/为r处恒星的轨道运动速率,M(r)是星系在半径r以内的质量

R为星然復消失处的Y,则M(R)代表星系发光物质的质量 => 质光电子
计算发光物版对几0的贡献:几0(发光物版)≈0.5% 质量聚度不到临界聚度(世争鱼)1%
5若Y>R天族量则V(t)曲线从Y=R外以Y-1/2下降 V(t)
实际星系转动曲的一从星系和、陡然升起、再近似水平延伸
⇒ 旋涡屋系在发光部分外有一个特型比尺大得多的碎状"暗晕"(dark halo) 质量为发光物质的分10倍
椭圆星系也有大量暗物质 (dark matter) 考虑星系团 凡。(cluster) ≅ lo%30%.
暗物族①不发光的重子物质 原初核后成理范限制当与辐重子物质的质量强度 2.3%
② 非重强的版:有静质量的非重多较为, 活跃于极高温的极早期宇宙并随温度下降而退耦
中數子(點瞎物版一高速运动). 冷暗物版一低速运动
指导对 Cho的限制: Cho = Pho = 8x4 (bo = 8x4 Nbo Mph). Pho = Nbo Mph).
The Sho = STG NYO N MAR.
微波背影辐射公式 du= 8xhc (ℓ hot) -1) d入 (入八+从)范围内每个名能量E= 六
$dn_{V} = \frac{du}{E} = \frac{8\pi}{2} \left(e^{\frac{hc}{ho}} - 1 \right) d\lambda$
包含含物的的光在内的数缩 $N_V = \int_0^\infty \frac{2\pi}{3} \left(e^{\frac{1}{16}} - 1 \right)^{-1} d\lambda = 2 \times 10^7 T^3 / T m^3$
T=2.728K nyo=4.1×1081/m3 Ho=3.2×10+8h (0.5 <h<0.7) 3.4×10+0<y<5×10-5<="" td=""></h<0.7)>
=) (160 h = 3.7x 107 y &p 2.3% < 1100 < 5.1%
Cla(Cluster)≅10%~30%,代表宇宙中所在物质(可视物体与暗物质)贡佩犬⇒ 宇宙远非针闭
(98)年提出的暴涨模型(inflation)认为Ωo≅1
1998年削 协调几0至1.5 Co (dustur)≥10%~3°%: 约80%的物板不成团地方布于导触
1998年 测量宇宙常数八值取得进底:从含八项的爱因斯坦方移讨论宇宙学问题
$\Omega_0 = \Omega_{N_0}(*) + \Omega_{N_0}($ 字留常数 $N > 0$ 贡献)
<i>₹</i> 0%.

10.3.3 宇宙学歌时题 The cosmological constant problem.
1917年 爱因斯坦引入宇宙常数次人构造静态宇宙模型 1923年成弃
20世纪初年代 哈勒对比早期测量结果严重偏大 人名使过大的比不导致过小的宇宙年龄。
Gob+Ngab=8 π Tab \rightarrow Gab=8 π (Tab- $\frac{\Lambda}{8\pi}$ gab)
$(Tab)_{\Lambda} = -\frac{\Lambda}{8\pi}g_{ab} = (\rho+p)UaU_b + \rho g_{ab}$ 特殊理想流体 $-\rho=p=-\frac{\Lambda}{8\pi}$ $Tab = (\rho+p)UaU_b + \rho g_{ab}$ "负压线"
Tab = (P+P) UaUb+ Pgab "农区经"
Friedmann 方程 $3\frac{\dot{a}^{1}+\dot{k}^{2}}{a^{2}} = 8\pi\rho$ $2\frac{\ddot{a}}{a} + \frac{\dot{a}^{2}+\dot{k}^{2}}{a^{2}} = -8\pi\rho$ =) $3\ddot{a} = -4\pi a(\rho + 3\rho)$
仅考虑宇宙常数项人对P.P的预价 3ä=-标a(冲)=a/ 1/20 ~ 1/20
正宇宙常数人使宇宙加速膨胀,起行が用
(早期9亩,物质能量3亩ρ较大 31カ>fp 减速膨胀 αυλ
P随宇宙不断1段1版而:成小 引力=斤力 匀速1的1版
P 減小 31かく 氏か 加速膨胀 しょ
⇒ Hot < to 缓解宇宙午龄矛盾
20世纪50年代末 ①Ho新测量值为哈勃测值的方 ②近代恒星理论建立液外埋料能估计值
至近代物理发现"真空不空"、真空中各种的的真空激怒(虚的政权分对不断产生与湮灭)
由量子动论处于真星态的场形有很大的能量密度一真空能量密度Prac (vacuum enengy density)
一真空态定义为重子场的基态,是能量取最低值(非零)的状态 Puac = -Puac
由基本统论孤不变性(没有一特殊的观情族,无法推定Ua)(Tab)vac=-Puncgab
码式上类用于宇宙常数项人的贡献 (Tab)/>=-分别的 人→8元月 05. 人→8元月
G 不涉及引力的中物理学:Pvac无可观测效应,仅参层能量差而真空为测量基准。
涉以引力的物理学:所有能量宽度稍是断壁戛曲的根源。
ρ_{NOC} 的重级: 理花预测 $\rho_{NOC} \sim \frac{E^2}{(DEC)^2 c^2} \sim o^{44} + $

可能的补救方法:爱图斯坦切话程在考虑 (vac的贡献前已存在一个裸宇宙常数 八bare

与恕fvac相抵消 ←> fvac的组成非真杂,裸入抵消过于凑巧

物理導動的弱常數问题:Pva.5人量級相差太大

天文学家的宇宙常数问题:观测确定非零的人项是6存在.

人的存在对宇宙演化的影响 Gab = 8元(Tab - Anglab)

Friedmann
$$\delta R_{\perp}^{2} = 3 \frac{\dot{a}^{2} + \dot{k}}{a^{2}} = 8\pi \rho + \Lambda$$

$$\frac{\partial^{2} \dot{a}}{\partial a} + \frac{\dot{a}^{2} + \dot{k}}{a^{2}} = -8\pi \rho + \Lambda$$

$$1 = \frac{8\pi \rho}{3H^{2}} + \frac{\Lambda}{3H^{2}} - \frac{\dot{k}}{a^{2}H^{2}}$$

临界記入
$$\rho_c = \frac{3H^2}{8\pi} (A=1)$$
 $\Omega = \frac{\rho}{\rho_c} = \frac{8\pi\rho}{3H^2} \Omega$ Ω_{A}

对论当今时刻to情况: Po⊆Pho(辐射贡献可忽略) 兄≅凡ho

$$1 = \Omega_{M_0} + \Omega_{N_0} - \frac{k}{a^2 H a^2}$$
 $k = 0$ 空间曲率负献为 0 ⇒ 要求存在非零的 Ω_{N_0}

寝义液连多量(deceleration parameter): 吋戒速度-ä1故无量収化处理

$$q = -\frac{\alpha^2}{\hat{a}^2} \frac{\hat{a}}{\hat{a}} = -\frac{1}{H^2} \frac{\hat{a}}{\hat{a}}$$

對強物族等 (
$$\flat=0$$
) $2\frac{\ddot{a}}{a} = \Lambda - \left(\frac{8\pi \rho}{3} + \frac{\Lambda}{3}\right) = \frac{2\Lambda}{3} - \frac{8\pi \rho}{3}$

$$\frac{\grave{a}}{a} = \frac{1}{3} \bigwedge - \frac{4\pi \ell}{3}$$

$$Q = -\frac{1}{H^2} \left(\frac{\Lambda}{3} - \frac{4\pi \rho}{3} \right) = \frac{4\pi \rho}{3H^2} - \frac{\Lambda}{3H^2} \quad \text{P} \quad Q_0 = \frac{4\pi \rho_0}{3H_0^2} - \frac{\Lambda}{3H_0^2} = \frac{1}{2} Sym_0 - Sym_0$$

一小、导致减速,正外。影如速

直接测量减速转量 8:测量对象是对溴化7敏层的距离描示物

- Ia型起新星 (type Ia Supernova)

1998年 Riess, Perlmutter 观测结果显示

□宇宙常数丰曜且为正(Λ>0) □当宇宙正在加速膨胀(Ω~> ±Ωμω → 2<0)

观测 放速参数 2.5 CMB 非各国 同性度结果得出 Ω_{Mo} = D.25_{-0.12} S_{No} = 0.63_{-0.43}

故 □ Ω_{Mo+ΩΛο}≅1 因而 k≤o 生综宙接近值.

回风的运导地位,为总体的7%左右.

字角模型由冷暗物板 CDM模型(Mno=1)至 NCDM模型 (Mn≥0.3, Nn≥0.7)

Note: Nath的宇宙等数,但八/8元(wc~lo¹²⁰/极小但非寥

——解决天文势问题,但物理学家问题仍然存在.

至10.4 标准模型的疑准和充限 Finding a way out of difficulties of the standard model

10.4.1 松桃 particle horizons

event horizon

/gwikis世界线G. 事件视界:划分时空中能被看得见的事件和不能被看见的事件 任一时刻事件发出的光信号与观查世代的日相交 潍银赋堂.

G的新物料 Rindler observer 事件视界依赖于观名的选择

考虑各向同性观者G(粒3)及其愢壳戗上-鱼p. 注:大爆炸至兰并非阳十鱼

是码在短3任-时刻所发的光1号都不与G交3P?(k=o情况)因果共剂10起

 $(A(t)) \propto \begin{cases} t^{t/2} & \text{始 指記} \\ t^{t/3} & \text{物版語} \end{cases} \Rightarrow \hat{t}(t) = \begin{cases} t^{t/2} \\ t^{t/3} \end{cases} \hat{t}(0) = 0$

Jas = St gab

(M, gas)

FLRW 度规 gab = a lab 为来形平直度规 [共形变换 (conformal transformation) C: gob + gab]

(两度规相差-个外处为正的失移因为,即两者有失移联系+100为殖度规)

故任-矢量 V^a 风 g_{ab} 衡量是类时的/类组的/类化的 $g_{ab}V^aV^b < o/>o/>o/=o$

⇔用1~的量类时的/契的/类的

一条类光曲线用 gab 衡量是测地线 ← 用 Yab 衡量是测地线

失的变换保持失量的类时性,类皂性,类粉生,仅保持类光曲线的测也性. 因果絲 (causal relation) 夜

词配宜的惯性些标时间 $t \in (-\infty, +\infty)$ k = 0 FLRW时至 $t \in (0, +\infty)$ — 幹词配宜. 设石为过事件P的均匀面,被分>>引被G在每时看到的短子 与不能被看到的粒子组成的两个子集,分骨面为 观在G在时刻P的粒与视界(particle horizon) 大爆炸 t=0=t 粒子视界需要给定-蕨类时线汇作为粒子. 依赖于观治G及其世界线上一些的选取 类*测地线· 视界(国有)半经/视界距离 DH(tp),时刻如的枢غ视界上任三与p的距离, DH(tp)=a(tp) for att = {2ct 辐射宇宙 物质宇宙肠胀至最大町粒头洲清失 FLRWp视失形阻 辐射钻从大爆炸至大抗压都有粒子视界。 k=+1 k=+1 matter G. k=+1 radiation G Q=0 big crowdh. (极早期宇宙 t<15). 10.4.2 标准模型的疑难。 Difficulties of the standard model ①视界疑难 (horizon problem) /均性疑难. 观测CMBR ⇒ 粉退耦时ty~10°s 宇宙已经均匀和各何同性 解释: 各种粒子频繁相互作用、充分搅拌 ←→ 存在粒子视界 -t=to 当可观测宇宙 (the presently observable Universe) De (tb) Dylta)为当今可观测宇宙的当今大小 Dylta) DA(H). t=tvd Dg(to)= DH(to)=3cto = 3x(3x108)x(3x10¹) = 3x10²⁶ m. Dis (tra) / Dis(to) = a(tra) = Tr(to) = 2.73K Tr(tra) = 4000 K T~ 07 DG(trd)=2x1033m. DHITM) = >ctrd= 2x(3x108)x |013 = 6x101m

⇒ 当今可观测宇宙在光褪耦断的特征 Bo(tra)约为当时视界距离 DH(tra)的33倍.

粒子视界定义→某一时刻的空间中距离大于山的粒子之间必定不曾有过相互作用。

任-粒子价发的任何信息在此时刻之前都不能到达另一粒子

由于 DH(t) = {2ct 輻射的 Dg(t) ~ at) = {t1/2 t2/3} DH(to) = Dg(to)

所从Dg(t)>DH(t)程底越到早期宇宙越严重 ⇒ 当今可观测宇宙在早期根本不可能和分撹拌。

例如t=10⁴⁵s T(10⁴⁵s)=3×10³¹K Dg(10⁴³s)为DH(10⁴³s)的10²⁹倍.

分导效描述一均性疑难:

观看G在も时刻接收到光子逻辑时刻trd两地)(微珠源小)发出的辐射

Daltra)为tra时刻源1.2之间的固有距离,Dhltra)为视界距离~ to litra) Backan Dhltra

一字笛在tra时刻到在Du(tra)尺度内是均匀的《温度相同/

一颗1和2之间不可能在trd之前有些接触

✓ 战程均性难以解释

Note: 巴观测到的宇宙 (the observed universe) 大小为兄

星乳距离地球越远,星秋歇的光灯形越大 近似飞=以 该屋轨的退行速率. U=H0)0

Do=ZHo^T 量级为10⁻¹⁶m Ho^T为哈勃K蔑(Hubble length)

回暂性疑难(flatness problem) 空间程 k=0,Ω=1. 随着空间膨胀Ω值与1的偏离愈发产重

領皇宇宙中軍情况的偏高程度 $\mathcal{E}(t) = \left| 1 - \frac{1}{\Omega(t)} \right| = \left| 1 - \frac{\rho}{\rho} \right| = \left| \frac{\rho - \rho}{\rho} \right| = \frac{3|k|}{8\pi a^2 \rho(t)}$ $\mathcal{E}_{\alpha}\left(\rho a^2 \right)^{-1} = \begin{cases} (\rho a^4)^{-1} a^2 \propto a^2 & \text{辐射管i.} \\ (\rho a^2)^{-1} a \propto a & \text{物(身ii.} \end{cases} \quad a(t) \uparrow \quad a(ta) \cong \frac{T(10^{-43}s)}{T(ta)} \quad a(t0^{-43}s) = 10^{31} a(10^{-43}s)$

⇒ E(to)≅ |0⁶⁰×E(10⁴³s) 宇宙膀胱ず5值有惊人的放大作用

凡(to) >0. | 量级为 | , &(to) <(0 ⇒ &(10⁻⁴⁵s)=10⁻⁵¹

 $\Omega(10^{-6}s)\cong (1\mp10^{-57})^{-1}\cong |\pm10^{-57}|$ Ω 配外、 特別(这件而无法形成星系

⇒在10⁴³s时的Ω值必须被精确心"微调"至与1如此接近,使至今Ω的量级为1.

微调疑难(fine-tuning problem)的别等效描述一次简疑难:特征熵(o3内) S>10⁰⁷

正负物质不对和性、适当的密民涨落谱 89/10 产生9组结构

[初始条件问题]

10.4.3 暴汰模型及某对视界、Tutt疑难的解决 Solving the problems by inflationary model +9部3标程模型。 粒3的理大统-模型预言重数不守恒性 => 正0物质不对私性问题 宇醇问题一磁单极疑难: 极早期宇宙产生过特殊的非相对论性粒子, 퇮-种叫磁单极子(magnetic monopole) 农民随宇宙膨胀液小但对Ω的贡献仍此Ωo欢测值高10"量级 解决标准模型的视界疑难及平坦性疑难, 缓解磁单极疑难. =) 1981年 Guth 提出暴涨模型 由大铳-模型 高能情况下(高于Tc≃10⁴⁶GeV) 电磁.鲂.強粗虾作风铳- , 具有內卧对粉性 T<Tc 内部对形性自发凝缺 强相环作用与电势相环作用表现出不同 TemploffeeV为大统小简界温度 T=TEM=102GeV=1015K 电磁相至作用与弱相至作用表现出不同 Hìggs·场中(标量切)与传递转作用的中间跟包子W,,W,Z°都有耦信使其获得质量 有效势 V(中) 可解释为能量密度、适些择SU(5)大统一模型自由参数 V(中) 龔定以为能量极小的状态. φ=0 真鳇φ=Φτ. O T>Tc Q营存在Ф=O ② T=Tc 有两个极州值,其中个在Ф=D ⑤T<Tc 有两个极性,其中个在Φ=O为假真室(fabe vacuum)态. 另一个在中=中为真真皇(true vacuum)态. V(Or) < V(O) 暴冰模型对初始条件要求很低。宇宙在暴冰模型后的表现)对初始条件的细节很不敏感 连要求: 极早期宇宙中含有某些温度高于Tc的区域 中场处于舆空5中=0 区域不断膨胀下降低至Tc负某以下 V40有两个极价值,P场从Tc起进入假真空态[能量高于真真空态,为亚稳态] ϕ 內通过量升餐第效应穿越 $V(\phi)$ 曲线 的势垒至复复结。———— 所相变 对移相 $\phi=\phi$ 对移动数相 $\phi=\phi$ 相变产生得非常缓慢:T<Tc Φ切在假真空态滞留-段时间才通过相变选入真真空态。 (造锌×兔-模型多数) 过冷到*接近T=0仍处于假真空态,过冷阶段进行暴涨。 相重削假臭啥,Pr = 1076 kg.mi3 相重后到达T=0的真臭吃,V(如=0 释放相戛潜亚

当与宇宙中场在Teo Viol曲线真空态中于析迹微小洗涤 凡三人 考察过冷情状尺度因子a(b)的演化 $3\frac{\tilde{a}^2+k}{a^2}=8\pi\rho$ $\rho=\rho_F=常数$ $\rho=-\rho_F$ $k\simeq 0$ (a很小) $\frac{\dot{a}}{a} = \left(\frac{1}{3}8\pi G \rho_F\right)^{\frac{1}{2}} = \chi$ $\frac{d\ln a}{dt} = \chi$ $a(t) \propto e^{\chi t}$ Q(t)阻土短指数规律以极小的时间常数化 忽倒增长一暴涨 (inflotion) 假真空对应于压强为负的理想流体 $\ddot{a}=-\frac{4\pi\alpha}{3}(\rho+3\rho)>0$ 加速膨胀 . 时间常数 $\chi^{-1}=|o^{-1}|$ s. 负压强排作作用 > 能量器度的吸引作用 => 行力 暴涨始于te≥10⁻³⁴s (大统-惴温度Tc=10⁶/tc=10³⁷K). T<Tc 过冷 终于tr=10-25 暴涨价段末发生对杨性孤缺的相变 经历过暴涨的区域Φ场先乐从假真经态转入真真空态,从于真真空态的区域形为个泡(bubble)

⇒ 用加垫(rehooting) 能量方配络含类粒子, 温度升至Tc, 状态保持在真真空态

⇒ 标准馆模型演化 [两名称矛盾]

暴涨模型对标准模型的疑难免服 .

D视界疑难: 對可观测宇宙的早期R度运行视界范围

tp=10⁴⁵s Dp(tp)2(0³⁵m = 10³⁷ 加入tc至t的暴強阶段 DH(tp)不更 Dp(tp)急剧液小

Dg(tp) × altp) 全暴涨使度因3增大2% Z=e^{A(tf-tc)} X=10³⁴5 tf-tc≥10³⁴5

Z ≙ el⁶⁰ ≈ 10⁴³ » 10²⁹ 暴涨前 B, ≪ D_H 当于观洲宇宙仅是视界范围内的一个区域

视界内含5有因果联系,可以产生充分的相互作用使区域在暴涨前已经达到均匀和各向同性

区域 卷冰竹段 → 能速支大 标准模型 → 形形 → 今天的 「欢测宇宙.

因 阳性疑难: $\mathcal{E}=(pa^*)^{-1}=\int (pa^*)^{-1}a^* \propto a^*$ 梅州 $\mathcal{F}=0.51$ 的偏离程度 $\mathcal{E}(a)$ 移 $\mathcal{F}=0.051$ 的偏离程度 $\mathcal{E}(a)$ 形成 化 (Par) a a 物版 Sltp) 放大1000 を(to) 量項为1 (Pa²) × a² 駐 → a晕淋使 ε缩小量级运行膨胀针致 ε凿处量级

只要 ∩[٤]不是离夸地大、乞(ቴ)火堤排降近于0,∩(ቴ)≅|±0(10 ⋅ ೖ)

预测"宇宙与天的空间心气井带接近平直"

- · Guth 暴涨模型的问题:存面退出问题(graceful exit problem).
 - 1983年 Linde 混沌暴涨模型(chaotic inflation nodel)解决以上所有疑难且有独特优色
- 暴涨模型的天文学观测证据:
 - ① NCDM 带人的冷暗物质结构形成模型 (Yuo ⊆ 0.3 Quo ⊆ 0.7 符件预言 Qo ⊆ 1.
 - + 暴淋缩出 ACDM所需的原初状动谱
 - ②1996年微波紫辐射的非的同性性存在支持几。≃1的有力证据
 - @ 1918年 高红移 La 类超新星的欢测和明 当今宿正在加速的胀

\$10.5 暗物质和"新标准陷模型" Dark energy & the "New Standard Model"

10.5.1 暗能量问题 The dark energy problem

1918年 超新星的观测表明当今宇宙正在加速制铁 加速膨胀的形成机制一暗能量问题

暗能量.导致窗加速的弱内容物

由「义相对心曼因斯坦方程:能量额戶和压強戶对1/力均有贡献

p<の且1p15p可比拟时产生行力效应.

具有以下3个特征的"理想流体"都可充当暗能量lq.选者: 区别于暗的版 (pso)

②不发光 ③压强中和能量繁展P满止P~-P(对于Λ: Þ=-P)

④空间河布近似均匀[至沙在星系园的尺度上不表现出集聚现务,暗能量的发现基于学观尺度]

暗能量存的依据:

- ①当今宇宙加速膨胀 ③宇宙微波精器新的非新同性性反映出宇宙是到一种的(k20,凡≥1)
- ③不依赖于质量-光度关系的物理观测]对孔。贡献(440至0.33 其东7%可能为旧贵能量

复定能量(正字留常数)人作为暗能量第一级选者的严重疑准:

- ①宇宙蒂歇问题:排霍的宇宙蒂数人 运行标号物理的理论值..
- ② 13台性问题 (wincidence problem): PM & a > R & a + R = const

 $\frac{\Omega_{N}}{\Omega_{W}} = \frac{\rho_{N}}{\rho_{M}} \propto \alpha^{3} \frac{\Omega_{N}}{\Omega_{R}} = \frac{\rho_{N}}{\rho_{R}} \propto \alpha^{4}$ [期] Ω_{N} , Ω_{N} Ω

Peebles, Carroll, Turner i& Mo=0.7 Mm=0.3 AR=5x10-5

翻破 隔砌桩床

On在早期近似为0,在晚期近似为1,变化秘慢。

杨短时间内ΩΛ从0猛遭至| 当今宇宙正处在这一急速转变断段中.

loga.

等效描述:宇宙的微调困难. (fine-tuning problem)

<u> 介o</u> = 7 3 → 松早期宇宙 た ~ 10-100 松小

对极早期宇宙初始条件必须做极精密的微调 使 Pno/Pmo~1.

⇒ 动が浮暗能量(dynamical dark energy) 随时间缓慢心进行动が湧化。

其中一种为 quintessence-理论【第3陈版】 — 根早期宇宙拳滋中的标量场中在暴涨后仍有影响

φ功能量額 (φ=<u>φ+</u> V(Φ) 国第 (φ=<u>φ+</u> V(Φ)

中场变化的慢 ò<< V(Φ) 则 PΦ ≅-PΦ 在暴涨期间近似等价于正宇宙常数

暴滅结束时 中场能量大部分较化为重3 Pø≤ℓM. — α↑ → Pø→ℓM.

选择适当的V(中)函数形式 ⇒ Pp 随 a缓慢减小,超过PM

⇒ Pa(z)曲线在势(z=o)的起心与早期(z很大)的初值无关

解冰微调疑难.

Note: 基本粒子一氢无轻3. 帕琪色子. 井彭暗物版, 乡场

暗物质+暗能量 =) 暗污 guartessence 理论 (新原).

芳宇宙尺度上『义相呼ひ[星因斯也活む]失效,则应寻找新理论)解释

① 水庚下等效于广义相对论 ②符台对宇宙的各种观测数据.

10.5.2 新标准字值模型, The New Standard Model

新标准宇宙模型到具有以下特点:

- 以宇宙在空间上植 Co至1,宇宙正在加速膨胀 Co<D
- 內 极早期宇宙存在暴涨阶段 \$ 解释原标准宇宙模型疑准· 损跌所需的原初批动[种3]. 期间由勤汰基选单的宽展不均匀性为冷暗物质结构形成理论

(o.s.3 宇宙的命运 The destiny of our universe

原标准宇宙模型:宇宙在七之后的演化方式,即入于空间几乎

新标准馆模型:宇宙市运ې复奏 冗二轴中

- O暗能量是宇宙常数∧>> Лм«Sh 宇宙特近指数试粉胀(de Sitter宇宙)直至运运
- ②暗能量是沙秽暗触量 随时间减弱使介以》以,陷水物疾运,求速膨胀,直致运
- ③暗能量是动树暗能量 演化为p<0,p>0 (类似物宇宙常数) 宇宙从膨胀转为收缩
- 田有限时间t, alt)市限大 [Big Rip]. ·····

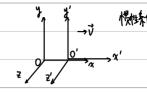
10.5.4 "黑暗物理3"的光明前迹 The bright future of dark physics

基础物理学正确以暗能量为代表的严重疑难挑战 彐 新物理突碘.

·观测:天刘多 高精度.大数量研究高红移Ia型起新星,追溯宇宙膀胱F处.

测度暗能量物态活程 W= 🏲 及퇮通时间演化以区分暗能量模型. P+扑<

2.理论:理论物理学参和大体物理学多 暗能量理论研究


高鼾如椒泡

摄→ 振刈財花提宴

Sin 同时性的相对性

伽利威变换 X'=X-Ut Y'=Y 3'=8 t'=t

 $W_X = \frac{dx(t)}{dt}$ $W_X' = \frac{dx'(t)}{dt} = W_X - V$

1873年 麸斯韦方程组(化许温动解)电弧波,我站贮沙港c)不满足惯性系生标之间的抑剂略变换。

=) 修改伽利略变换七针

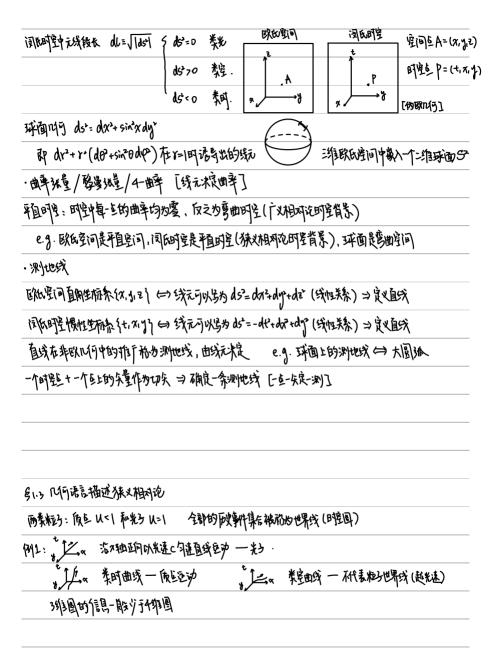
就行驶的列车补5龄上的地面补.

族牧和州华福理 + 光速不顧理 ⇒ 稅益藝典 Y=(1-^{ct})^{-1/2}=(1-β^t)^{-1/2}β=^{-t}

t'=Y(t-vx) x'=Y(x-vt) y'=y z'=z . v«c时逝似为伽利贻变换。

引入NA可单径削 C=1 {t,xy→{t,x'} 洛龙藏夔族有 ť=Y(t-vx) x'=Y(x-vt)

多1.2 D.阿语言初步 [线动坡内]


二维闰低空河中直角坐桥粉菱换下线元码试不菱

dl x 统元 ds=dx+dy=dx+dy'+ dl=Jds

地面条为(t,x),列等分(t',x') 对(两个事件分别有 Pi=(ti,x)=(ti,x') B=(ti,x)=(ti,x')

dt=to-to, dx=xo-xo, dt'=to-to, dx'=x'-x', A dt'=Y(dt-vdx) dx'=Y(dx-vdt)

得收 -dt-+dx+=-dt-2+dx+> 一页的断星的间隔 ds=-dt-+dx+ 在惯性生标繁换下形式有变

例2:爱国斯坦列车 以地面和基柱
B M A
・核均計を固有时
{tu 类时曲线 Tu-Ti=∫P, √do:
T)

